本論文之研究目的是以矽烷偶合劑(3-methacryloxy-propyl-
trimethoxysilane, MPS)對親水性表面的奈米氧化鋁粉末(Alumina, Al2O3)行表面改質,藉由偶合劑的兩極性在親水性的氧化鋁表面產生鍵結,而親油性的另一端便可以不受界面性質的影響,用雙螺桿壓出機以混鍊的方式,將改質後的奈米級氧化鋁粉末成功地到導入聚丙烯(Polypropylene, PP)中,形成奈米高分子複合材料,並與未改質前氧化鋁/聚丙烯高分子複合材料做比較。
研究結果顯示,藉由紅外線光譜分析(FT-IR)官能基鑑定,改質劑已成功地在無機氧化鋁表面產生鍵結;由X光繞射分析儀(XRD)證明導入氧化鋁粉末並不會改變PP的結晶型態;由掃描式電子顯微鏡(SEM)可看出表面改質對其分散性與結合力的差異;在熱性質方面,我們得知因為有機的偶合劑會先提早裂解,但會幫助降低裂解速率,提高最大裂解溫度;機械性質方面我們可以得知改質過後的奈米氧化鋁/PP複合材料比未改質的奈米氧化鋁/PP複合材料有更強大的抗拉模數;根據本實驗結果顯示出,本研究改質成功並且已達到奈米級分散。
To enhance the interfacial interaction in alumina nanoparticles extruded polypropylene composites, an effective surface modification method was developed by grafting 3-methacryloxy-propyl-trimethoxy-
silane (MPS) onto the particles. We compared modified alumina- polypropylene nanocomposites with alumina-polypropylene composites.
Results of infrared spectroscopy demonstrated that the desired MPS have been covalently bonded to the surface of the alumina nanoparticles. It was found that filled alumina nanoparticles did not changed poly- propylene crystal structure by XRD. SEM images were shown that the modification influenced dispersal and bounding force of alumina nano- particles. In the thermal properties, MPS dissociated at first, decreased dissociation rate of nanocomposites, and increased dissociation temper-
ature. We analyzed that modified alumina-polypropylene nanocomposites tensile modulus were stronger than alumina-polypropylene nanocom-
posites tensile modulus in the mechanical properties. As a result, it was a successful experiment that modification of alumina nanoparticles and nanoparticles nanodispersal.