文化大學機構典藏 CCUR:Item 987654321/49472
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 47121/50987 (92%)
造访人次 : 13811680      在线人数 : 255
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻
    主页登入上传说明关于CCUR管理 到手机版


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: https://irlib.pccu.edu.tw/handle/987654321/49472


    题名: An Empirical Study on Optimal the Allocations in Advertising and Operation Innovation on Supply Chain Alliance for Complex Data Analysis
    作者: Wang, JT (Wang, Jiang-Tao)
    Yu, JJ (Yu, Jian-Jun)
    Yuan, YH (Yuan, Yu-His)
    Tsai, SB (Tsai, Sang-Bing)
    Zhang, SF (Zhang, Shu-Fen)
    贡献者: 勞工系
    日期: 2021-02-25
    上传时间: 2021-04-14 14:21:15 (UTC+8)
    摘要: Effective and efficient closed-loop supply chain processes can provide a significant competitive edge for companies. This study considered three investment strategies in the process of initiating closed-loop supply chain alliances. The results showed that a promised proportion has a significant effect on investment decisions under a pure investment strategy. Furthermore, a reasonable promised proportion can coordinate the supply chain under a pure innovation strategy but cannot in a pure advertising strategy. Upstream (i.e., innovation) investments decrease wholesale and retail prices, while downstream ones increase retail and wholesale prices. Increasing innovation investment can transform benefits to the downstream, while increasing advertising investment may cause opportunism. A hybrid investment strategy balances upstream and downstream investment simultaneously and provides insights into optimizing the supply chain system in investments.
    關聯: WIRELESS COMMUNICATIONS & MOBILE COMPUTING卷冊: 2021 文獻號碼: 6680300
    显示于类别:[勞動暨人力資源學系碩士班] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML231检视/开启


    在CCUR中所有的数据项都受到原著作权保护.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈