English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 47145/51011 (92%)
造訪人次 : 13885696      線上人數 : 275
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    主頁登入上傳說明關於CCUR管理 到手機版


    請使用永久網址來引用或連結此文件: https://irlib.pccu.edu.tw/handle/987654321/48784


    題名: Use of Non-Destructive Measurements to Identify Cucurbit Species (Cucurbita maxima and Cucurbita moschata) Tolerant to Waterlogged Conditions
    作者: Lin, HH (Lin, Hsin-Hung)
    Lin, KH (Lin, Kuan-Hung)
    Huang, MY (Huang, Meng-Yuan)
    Su, YR (Su, Yi-Ru)
    貢獻者: 園生系
    關鍵詞: chlorophyll fluorescence
    cucurbit
    spectral reflectance
    squash
    waterlogging tolerance
    日期: 2020-09
    上傳時間: 2020-11-05 09:48:52 (UTC+8)
    摘要: Limited information is available regarding the physiology of squash plants grown under waterlogging stress. The objectives of this study were to investigate the growth and physiological performances of three cucurbit species,Cucurbita maximacultivar (cv.) OK-101 (OK) andCucurbita moschatacv. Early Price (EP) and Strong Man (SM), in response to waterlogging conditions, and to develop a precise, integrated, and quantitative non-destructive measurement of squash genotypes under stress. All tested plants were grown in a growth chamber under optimal irrigation and growth conditions for a month, and the pot plants were then subjected to non-waterlogging (control) and waterlogging treatments for periods of 1, 3, 7, and 13 days (d), followed by a 3-d post-waterlogging recovery period after water drainage. Plants with phenotypes, such as fresh weight (FW), dry weight (DW), and dry matter (DM) of shoots and roots, and various physiological systems, including relative water content (RWC), soil and plant analysis development (SPAD) chlorophyll meter, ratio of variable/maximal fluorescence (Fv/Fm), quantum photosynthetic yield (YII), normalized difference vegetation index (NDVI), and photochemical reflectance index (PRI) values, responded differently to waterlogging stress in accordance with the duration of the stress period and subsequent recovery period. When plants were treated with stress for 13 d, all plants exhibited harmful effects to their leaves compared with the control, but EP squash grew better than SM and OK squashes and exhibited stronger tolerance to waterlogging and showed less injury. Changes in the fresh weight, dry weight, and dry matter of shoots and roots indicated that OK plants suffered more severely than EP plants at the 3-d drainage period. The values of RWC, SPAD,Fv/Fm, YII, NDVI, and PRI in both SM and OK plants remarkably decreased at waterlogging at the 13-d time point compared with controls under identical time periods. However, the increased levels of SPAD,Fv/Fm, YII, NDVI, and PRI observed on 7 d or 13 d of waterlogging afforded the EP plant leaf with improved waterlogged tolerance. Significant and positive correlations were observed among NDVI and PRI with SPAD,Fv/Fm, and YII, indicating that these photosynthetic indices can be useful for developing non-destructive estimations of chlorophyll content in squashes when screening for waterlogging-tolerant plants, for establishing development practices for their cultivation in fields, and for enhanced cultivation during waterlogging in frequently flooded areas.
    關聯: PLANTS-BASEL 卷冊: 9 期: 9 文獻號碼: 1226
    顯示於類別:[園藝暨生物技術學系] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML195檢視/開啟


    在CCUR中所有的資料項目都受到原著作權保護.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©  2006-2025  - 回饋