文化大學機構典藏 CCUR:Item 987654321/48784
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 47225/51091 (92%)
造访人次 : 13997079      在线人数 : 236
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻
    主页登入上传说明关于CCUR管理 到手机版


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: https://irlib.pccu.edu.tw/handle/987654321/48784


    题名: Use of Non-Destructive Measurements to Identify Cucurbit Species (Cucurbita maxima and Cucurbita moschata) Tolerant to Waterlogged Conditions
    作者: Lin, HH (Lin, Hsin-Hung)
    Lin, KH (Lin, Kuan-Hung)
    Huang, MY (Huang, Meng-Yuan)
    Su, YR (Su, Yi-Ru)
    贡献者: 園生系
    关键词: chlorophyll fluorescence
    cucurbit
    spectral reflectance
    squash
    waterlogging tolerance
    日期: 2020-09
    上传时间: 2020-11-05 09:48:52 (UTC+8)
    摘要: Limited information is available regarding the physiology of squash plants grown under waterlogging stress. The objectives of this study were to investigate the growth and physiological performances of three cucurbit species,Cucurbita maximacultivar (cv.) OK-101 (OK) andCucurbita moschatacv. Early Price (EP) and Strong Man (SM), in response to waterlogging conditions, and to develop a precise, integrated, and quantitative non-destructive measurement of squash genotypes under stress. All tested plants were grown in a growth chamber under optimal irrigation and growth conditions for a month, and the pot plants were then subjected to non-waterlogging (control) and waterlogging treatments for periods of 1, 3, 7, and 13 days (d), followed by a 3-d post-waterlogging recovery period after water drainage. Plants with phenotypes, such as fresh weight (FW), dry weight (DW), and dry matter (DM) of shoots and roots, and various physiological systems, including relative water content (RWC), soil and plant analysis development (SPAD) chlorophyll meter, ratio of variable/maximal fluorescence (Fv/Fm), quantum photosynthetic yield (YII), normalized difference vegetation index (NDVI), and photochemical reflectance index (PRI) values, responded differently to waterlogging stress in accordance with the duration of the stress period and subsequent recovery period. When plants were treated with stress for 13 d, all plants exhibited harmful effects to their leaves compared with the control, but EP squash grew better than SM and OK squashes and exhibited stronger tolerance to waterlogging and showed less injury. Changes in the fresh weight, dry weight, and dry matter of shoots and roots indicated that OK plants suffered more severely than EP plants at the 3-d drainage period. The values of RWC, SPAD,Fv/Fm, YII, NDVI, and PRI in both SM and OK plants remarkably decreased at waterlogging at the 13-d time point compared with controls under identical time periods. However, the increased levels of SPAD,Fv/Fm, YII, NDVI, and PRI observed on 7 d or 13 d of waterlogging afforded the EP plant leaf with improved waterlogged tolerance. Significant and positive correlations were observed among NDVI and PRI with SPAD,Fv/Fm, and YII, indicating that these photosynthetic indices can be useful for developing non-destructive estimations of chlorophyll content in squashes when screening for waterlogging-tolerant plants, for establishing development practices for their cultivation in fields, and for enhanced cultivation during waterlogging in frequently flooded areas.
    關聯: PLANTS-BASEL 卷冊: 9 期: 9 文獻號碼: 1226
    显示于类别:[園藝暨生物技術學系] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML195检视/开启


    在CCUR中所有的数据项都受到原著作权保护.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋