English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 46962/50828 (92%)
造訪人次 : 12448970      線上人數 : 633
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    主頁登入上傳說明關於CCUR管理 到手機版


    請使用永久網址來引用或連結此文件: https://irlib.pccu.edu.tw/handle/987654321/41934


    題名: Characteristics of Lock-in Thermography Signal from Solder Bump Cracking in Wafer-level Chip Scale Packaging for Internet of Things Applications
    作者: Wu, IC (Wu, I-Chih)
    Huang, YJ (Huang, Yu-Jung)
    Wang, MH (Wang, Min-Haw)
    Jang, LS (Jang, Ling-Sheng)
    貢獻者: 電機工程系
    關鍵詞: DEVICES
    SENSOR
    日期: 2018
    上傳時間: 2019-01-22 11:11:57 (UTC+8)
    摘要: Internet of Things (IoT) devices are increasingly incorporating miniature multilayered integrated architectures. However, the localization of faults in the interconnection of solder bumps remains challenging. The problem of solder bump cracking (SBC), which causes failure of interconnections subjected to evaluation of board-level reliability (BLR) in wafer-level chip scale packaging (WLCSP) for IoT applications, is studied. Lock-in thermography (LIT) monitoring is a promising method for failure analysis (FA) of SBC. This method makes use of indium-antimonide (InSb) as the infrared (IR) sensor. In this study, we characterized the drop test behavior of WLCSP and the critical units located at the printed circuit board (PCB) center. LIT is shown to enable the detection of the fault location between the IoT chip and PCB in complex daisy chain interconnections, and more accurate detection as a result of applying LIT to thermal imaging for the resistive openings of SBC is discussed. The experimental results show that the employment of LIT enhances the visibility of the resistive openings. The analysis method can also be extended to shorts or leakage currents in thermally active failures, especially in packaged semiconductors.
    顯示於類別:[電機工程系] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML279檢視/開啟


    在CCUR中所有的資料項目都受到原著作權保護.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋