English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 47225/51091 (92%)
造訪人次 : 13993876      線上人數 : 220
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    主頁登入上傳說明關於CCUR管理 到手機版


    請使用永久網址來引用或連結此文件: https://irlib.pccu.edu.tw/handle/987654321/33697


    題名: 以總體經濟變數預測馬來西亞股市: 類神經網路方法之應用
    Using Macroeconomic Variables to Predict Malaysia Stock Market: An Application of Artificial Neural Network
    作者: 鄭嫦倩
    TANG, SIONG KIONG
    貢獻者: 全球商務碩士學位學程碩士班
    關鍵詞: 類神經網路
    股票價格預測
    經濟變量
    Artificial neural networks
    Stock Price Prediction
    Macroeconomic Variables
    日期: 2016-06
    上傳時間: 2016-08-17 13:53:05 (UTC+8)
    摘要: It is believed that macroeconomic factors give great impact toward the stock market. The aim of this paper is to predict the FTSE Bursa Malaysia KLCI using macroeconomic variables with artificial neural network (ANN). The macroeconomic variables are considered in this study based on the Arbitrage Pricing Theory (APT) and other analytical models used in previous research. The macroeconomic variables used in this research are palm oil price, industrial production index, inflation rate, official reserve assets, exchange rate, and interest rate. This research also compares the efficiency of ANN model with other time series analysis using mean absolute percentage error (MAPE). The stock price is predicted in two different time periods: Period 1 (January 2002 to November 2015) and Period 2 (January 2010 to November 2015). The result shows that ANN approach has the lowest MAPE among all methods. MAPEs of ANN in shorter period are better than in the longer period. This is because the short period excludes the financial crisis impact in year 2008 and 2009.
    顯示於類別:[全球商務學位學程] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML505檢視/開啟


    在CCUR中所有的資料項目都受到原著作權保護.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©  2006-2025  - 回饋