文化大學機構典藏 CCUR:Item 987654321/33697
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 47225/51091 (92%)
造访人次 : 14003127      在线人数 : 224
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻
    主页登入上传说明关于CCUR管理 到手机版


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: https://irlib.pccu.edu.tw/handle/987654321/33697


    题名: 以總體經濟變數預測馬來西亞股市: 類神經網路方法之應用
    Using Macroeconomic Variables to Predict Malaysia Stock Market: An Application of Artificial Neural Network
    作者: 鄭嫦倩
    TANG, SIONG KIONG
    贡献者: 全球商務碩士學位學程碩士班
    关键词: 類神經網路
    股票價格預測
    經濟變量
    Artificial neural networks
    Stock Price Prediction
    Macroeconomic Variables
    日期: 2016-06
    上传时间: 2016-08-17 13:53:05 (UTC+8)
    摘要: It is believed that macroeconomic factors give great impact toward the stock market. The aim of this paper is to predict the FTSE Bursa Malaysia KLCI using macroeconomic variables with artificial neural network (ANN). The macroeconomic variables are considered in this study based on the Arbitrage Pricing Theory (APT) and other analytical models used in previous research. The macroeconomic variables used in this research are palm oil price, industrial production index, inflation rate, official reserve assets, exchange rate, and interest rate. This research also compares the efficiency of ANN model with other time series analysis using mean absolute percentage error (MAPE). The stock price is predicted in two different time periods: Period 1 (January 2002 to November 2015) and Period 2 (January 2010 to November 2015). The result shows that ANN approach has the lowest MAPE among all methods. MAPEs of ANN in shorter period are better than in the longer period. This is because the short period excludes the financial crisis impact in year 2008 and 2009.
    显示于类别:[全球商務學位學程] 博碩士論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML506检视/开启


    在CCUR中所有的数据项都受到原著作权保护.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈