English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 46867/50733 (92%)
造訪人次 : 11879181      線上人數 : 793
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    主頁登入上傳說明關於CCUR管理 到手機版


    請使用永久網址來引用或連結此文件: https://irlib.pccu.edu.tw/handle/987654321/26919


    題名: Multiple extreme learning machines for a two-class imbalance corporate life cycle prediction
    作者: Lin, SJ (Lin, Sin-Jin)
    Chang, CH (Chang, Chingho)
    Hsu, MF (Hsu, Ming-Fu)
    貢獻者: Dept Accounting
    關鍵詞: Ensemble learning
    Extreme learning machine
    Imbalanced dataset
    Corporate life cycle
    Knowledge generation
    日期: 2013-02
    上傳時間: 2014-03-03 10:36:55 (UTC+8)
    摘要: Pre-warning of whether a corporate will fall into a decline stage in the near future is an emerging issue in financial management. Improper decision-making by firms incurs a higher possibility to cause financial crisis (distress) and deteriorates the soundness of financial markets. The aim of this study is to establish a novel prediction mechanism based on combining the sampling technique (synthetic minority over-sampling technique; SMOTE), feature selection ensemble (original, intersection, and union), extreme learning machine (ELM) ensemble and decision tree (DT). The proposed model - namely, the multiple extreme learning machines (MELMs) - shows promising performance under numerous assessing criteria, but one critical defect of the ensemble classifier is that it lacks comprehensibility. Thus, we perform a DT as the knowledge generator to extract the inherent information from the ensemble mechanism. This knowledge visualized process can assist decision makers in efficiently allocating limited financial resources and to help firms survive in an extremely competitive environment. (C) 2012 Elsevier B.V. All rights reserved.
    關聯: KNOWLEDGE-BASED SYSTEMS Volume: 39 Pages: 214-223
    顯示於類別:[會計學系暨研究所 ] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML470檢視/開啟


    在CCUR中所有的資料項目都受到原著作權保護.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋