文化大學機構典藏 CCUR:Item 987654321/26919
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 46867/50733 (92%)
造访人次 : 11884178      在线人数 : 752
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻
    主页登入上传说明关于CCUR管理 到手机版


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: https://irlib.pccu.edu.tw/handle/987654321/26919


    题名: Multiple extreme learning machines for a two-class imbalance corporate life cycle prediction
    作者: Lin, SJ (Lin, Sin-Jin)
    Chang, CH (Chang, Chingho)
    Hsu, MF (Hsu, Ming-Fu)
    贡献者: Dept Accounting
    关键词: Ensemble learning
    Extreme learning machine
    Imbalanced dataset
    Corporate life cycle
    Knowledge generation
    日期: 2013-02
    上传时间: 2014-03-03 10:36:55 (UTC+8)
    摘要: Pre-warning of whether a corporate will fall into a decline stage in the near future is an emerging issue in financial management. Improper decision-making by firms incurs a higher possibility to cause financial crisis (distress) and deteriorates the soundness of financial markets. The aim of this study is to establish a novel prediction mechanism based on combining the sampling technique (synthetic minority over-sampling technique; SMOTE), feature selection ensemble (original, intersection, and union), extreme learning machine (ELM) ensemble and decision tree (DT). The proposed model - namely, the multiple extreme learning machines (MELMs) - shows promising performance under numerous assessing criteria, but one critical defect of the ensemble classifier is that it lacks comprehensibility. Thus, we perform a DT as the knowledge generator to extract the inherent information from the ensemble mechanism. This knowledge visualized process can assist decision makers in efficiently allocating limited financial resources and to help firms survive in an extremely competitive environment. (C) 2012 Elsevier B.V. All rights reserved.
    關聯: KNOWLEDGE-BASED SYSTEMS Volume: 39 Pages: 214-223
    显示于类别:[會計學系暨研究所 ] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML470检视/开启


    在CCUR中所有的数据项都受到原著作权保护.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈