English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 46962/50828 (92%)
造訪人次 : 12388555      線上人數 : 1076
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    主頁登入上傳說明關於CCUR管理 到手機版


    請使用永久網址來引用或連結此文件: https://irlib.pccu.edu.tw/handle/987654321/24276


    題名: Global defensive alliances of trees and Cartesian product of paths and cycles
    作者: ang, CW (Chang, Chan-Wei)
    Chia, ML (Chia, Ma-Lian)
    Hsu, CJ (Hsu, Cheng-Ju)
    Kuo, D (Kuo, David)
    Lai, LL (Lai, Li-Ling)
    Wang, FH (Wang, Fu-Hsing)
    貢獻者: Dept Informat Management
    關鍵詞: Global defensive alliance
    Tree
    Cartesian product
    Path
    Cycle
    日期: 2012-03
    上傳時間: 2013-02-22 14:38:53 (UTC+8)
    摘要: Given a graph G. a defensive alliance of G is a set of vertices S subset of V(G) satisfying the condition that for each v epsilon S. at least half of the vertices in the closed neighborhood of v are in S. A defensive alliance S is called global if every vertex in V(G) - S is adjacent to at least one member of the defensive alliance S. The global defensive alliance number of G. denoted gamma(a)(G), is the minimum size around all the global defensive alliances of G. In this paper, we present an efficient algorithm to determine the global defensive alliance numbers of trees, and further give formulas to decide the global defensive alliance numbers of complete k-ary trees for k = 2, 3, 4. We also establish upper bounds and lower bounds for gamma(a)(P-m x P-n), gamma(a)(C-m x P-n) and gamma(a)(C-m x C-n), and show that the bounds are sharp for certain m, n. (c) 2011 Elsevier B.V. All rights reserved.
    關聯: DISCRETE APPLIED MATHEMATICS 卷: 160 期: 4-5 頁數: 479-487
    顯示於類別:[資訊管理學系暨資訊管理研究所 ] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML480檢視/開啟


    在CCUR中所有的資料項目都受到原著作權保護.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋