文化大學機構典藏 CCUR:Item 987654321/24276
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 46962/50828 (92%)
造访人次 : 12410698      在线人数 : 1275
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻
    主页登入上传说明关于CCUR管理 到手机版


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: https://irlib.pccu.edu.tw/handle/987654321/24276


    题名: Global defensive alliances of trees and Cartesian product of paths and cycles
    作者: ang, CW (Chang, Chan-Wei)
    Chia, ML (Chia, Ma-Lian)
    Hsu, CJ (Hsu, Cheng-Ju)
    Kuo, D (Kuo, David)
    Lai, LL (Lai, Li-Ling)
    Wang, FH (Wang, Fu-Hsing)
    贡献者: Dept Informat Management
    关键词: Global defensive alliance
    Tree
    Cartesian product
    Path
    Cycle
    日期: 2012-03
    上传时间: 2013-02-22 14:38:53 (UTC+8)
    摘要: Given a graph G. a defensive alliance of G is a set of vertices S subset of V(G) satisfying the condition that for each v epsilon S. at least half of the vertices in the closed neighborhood of v are in S. A defensive alliance S is called global if every vertex in V(G) - S is adjacent to at least one member of the defensive alliance S. The global defensive alliance number of G. denoted gamma(a)(G), is the minimum size around all the global defensive alliances of G. In this paper, we present an efficient algorithm to determine the global defensive alliance numbers of trees, and further give formulas to decide the global defensive alliance numbers of complete k-ary trees for k = 2, 3, 4. We also establish upper bounds and lower bounds for gamma(a)(P-m x P-n), gamma(a)(C-m x P-n) and gamma(a)(C-m x C-n), and show that the bounds are sharp for certain m, n. (c) 2011 Elsevier B.V. All rights reserved.
    關聯: DISCRETE APPLIED MATHEMATICS 卷: 160 期: 4-5 頁數: 479-487
    显示于类别:[資訊管理學系暨資訊管理研究所 ] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML483检视/开启


    在CCUR中所有的数据项都受到原著作权保护.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈