致謝			Ι
中文摘要			Π
英文摘要			III
目次			IV
圖目錄			V
表目錄			Х
第一章		序論	1
	第一節	前言	1
	第二節	奈米科技	2
	第三節	超分子化學(Supramolecular Chemistry)	3
	第四節	自 組 裝 (self-assembly method)	11
	第五節	水熱反應 (hydrothermal reaction)	14
	第六節	單體環型超分子	16
第二章		研究動機	22
第三章		實驗部分	26
	第一節	儀器	26
	第二節	藥品 Culture Un	27
	第三節	有機配子 2,2'-bisbenzimidazole 合成	29
	第四節	錸金屬超分子之合成	30
	第五節	晶體數據與 ORTEP	37
第四章		結果與討論	52
	第一節	結構與性質分析	52
	第二節	化合物 1-7 結構探討	94
第五章		結論	96
參考文獻			97
附錄			101

圖目錄

圖 1-1	分子自組裝成超分子示意圖	3
圖 1-2	(a) 帶正三價的 tris(diazabicyclooctane)藉 ion-ion interaction 產生	
	主客作用;(b)NaCl 離子晶格示意圖	5
圖 1-3	(a)鈉離子和水之間的離子-極作用力,(b)鹼金族離子與巨環分子	
	間的離子-極作用力,(c)金屬離子與含鹼基配子產生的配位共價鍵	5
圖 1-4	(a) 偶極-偶極作用力示意圖;(b) 酮基以不同的位向產生偶極-偶	
	極作用力	6
圖 1-5	氢鍵作用圖	6
圖 1-6	DNA 中四個鹼基 A、T、C、G 的相互配對	7
圖 1-7	(a) 1,4-丁二烯π電子以η ⁴ 與Fe(CO)3鍵結; (b) Me ₅ C ₅ 與Re 的鍵	
	結	8
圖 1-8	苯環與苯環間的三種 π-π 堆疊示意圖	9
圖 1-9	三種 π-π 堆疊發生時 π 電子之間的交互作用	9
圖 1-10	由凡得瓦爾作用力所形成的 inclusion complex	10
圖 1-11	特定的分子前驅物經由自組裝合成特定結構的超分子	11
圖 1-12	經由設計合成出特定之結構示意圖	12
圖 1-13	示意圖模擬高溫高壓反應器內所進行的反應情形	14
圖 1-14	雙核金屬環狀分子結構之示意圖	16
圖 1-15	(A)結構在稀釋的溶液中,其環形分子會轉變成雙環微分子串聯之	
	結構(B)	17
圖 1-16	超分子三角形與四邊形分子平衡關係圖	17
圖 1-17	一步合成法之反應示意圖	18
圖 1-18	硫醇或醇類之矩形分子之示意圖	18

圖 1-19	長方形分子的合成步驟	19
圖 1-20	利用一步合成法合成一系列的長方形超分子	20
圖 1-21	含氧橋錸金屬長方柱超分子	21
圖 1-22	3D 籠狀超分子合成圖與晶體結構	21
圖 2-1	fac-(CO) ₃ Re 之示意圖	22
圖 2-2	向性鍵結法形成金屬環化錯合物	23
圖 2-3	可動性有機配子與剛性建構單元	24
圖 2-4	動性基團的構型控制金屬嵌入環化錯合物	24
圖 2-5	1,2-Bis(4-pyridyl)ethane (bpe)的二種構型: (a) gauche 構型; (b)anti	
	構型	25
圖 2-6	1,3-bis(4-pyridyl)propane (bpp)的四種構型	25
圖 3-1	有機配子 BiBzIm 合成示意圖	29
圖 3-2	化合物[Re4(CO)12(bpe)2(OC4H9)4] (1)合成反應示意圖	30
圖 3-3	化合物[Re2(CO)6(bpe)(BiBzIm)] (2)合成反應示意圖	31
圖 3-4	化合物[Re4(CO)12(bpe)2(THBQ)] · (C6H6)2 (3)合成反應示意圖	32
圖 3-5	化合物[Re2(CO)6(bpp)(OCH3)2] (4)與 [Re2(CO)6(bpp)(ox)] (5)合成	
	反應示意圖	34
圖 3-6	化合物[Re2(CO)6(bpp)(BiBzIm)] · 0.25(C8H10) (6)合成反應示意圖	35
圖 3-7	化合物[Re2(CO)6(bpp)(DHBQ)] (7)合成反應示意圖	36
圖 3-8	[Re ₄ (CO) ₁₂ (bpe) ₂ (OC ₄ H ₉) ₄] (1) 晶 體之 ORTEP	38
圖 3-9	[Re ₂ (CO) ₆ (bpe)(BiBzIm)] (2) 晶體之 ORTEP	40
圖 3-10	[Re ₄ (CO) ₁₂ (bpe) ₂ (THBQ)] · (C ₆ H ₆) ₂ (3) 晶體之 ORTEP	42
圖 3-11	[Re ₂ (CO) ₆ (bpp)(OCH ₃) ₂] (4) 晶體之 ORTEP	44
圖 3-12	[Re ₂ (CO) ₆ (bpp)(ox)] (5)之晶體 ORTEP	46
圖 3-13	[Re ₂ (CO) ₆ (bpp)(BiBzIm)] · 0.25(C ₈ H ₁₀) (6)之晶體 ORTEP	48

圖 3-14	Re ₂ (CO) ₆ (bpp)(DHBQ)] (7)之晶體 ORTEP	50
圖 4-1-A	化合物1晶體結構圖	52
圖 4-1-B	化合物1結構間距圖	53
圖 4-1-C	化合物1之space filling圖	53
圖 4-1-D	呂光烈老師實驗室合成之化合物(a)化合物[{(CO) ₃ Re((μ-OC ₇ H ₇) ₂ -	
	Re(CO) ₃ } ₂ (µ-bpe) ₂](b)使用之配位基trans-1,2-bis(4-pyridyl)ethylene	
	(b) space filling 圖	54
圖 4-1-E	化合物1之晶體堆疊圖(a)單層及(b)雙層	54
圖 4-1-F	化合物1之紅外線吸收光譜圖	55
圖 4-1-G	化合物1之熱重量分析曲線圖	55
圖 4-1-H	化合物1之紫外光/可見光光譜圖	56
圖 4-1-I	化合物1之螢光光譜圖	56
圖 4-2-A	化合物2晶體結構圖	57
圖 4-2-B	化合物2結構間距圖與示意圖	58
圖 4-2-C	化合物2之space filling圖 Culture UN	58
圖 4-2-D	(a)化合物2之晶體堆疊圖; (b)化合物2之晶體堆疊示意圖	59
圖 4-2-E	化合物2分子間作用力-錯開式π-π堆疊	59
圖 4-2-F	化合物2之紅外線吸收光譜圖	60
圖 4-2-G	化化合物2之熱重量分析曲線圖	60
圖 4-2-H	化合物2之紫外光/可見光光譜圖	61
圖 4-2-I	化合物2之螢光光譜圖	62
圖 4-3-A	化合物3晶體結構圖	63
圖 4-3-B	化合物3中間平面示意圖	64
圖 4-3-C	化合物3結構間距圖	64
圖 4-3-D	化合物3之space filling圖	65

圖 4-3-F 化合物 3 之晶體堆疊圖(沿 a 軸方向); (b) 苯客分子與主結構 CH… π作用力 66 圖 4-3-G 化合物3之红外線吸收光譜圖 66 圖 4-3-H 化合物3之熱重量分析曲線圖 67 圖 4-4-A 化合物4晶體結構圖 68 圖 4-4-B 化合物4結構間距圖 69 圖 4-4-C (a) 化合物4之 space filling 圖; (b) 太空梭示意圖 69 圖 4-4-D 化合物4之晶體堆疊圖(a)單層及(b)雙層 70 圖 4-4-E 化合物4之红外線吸收光譜圖 70 圖 4-4-F 化合物4晶體粉末繞射圖(上)與理論繞射圖(下) 71 圖 4-4-G 化合物4之熱重量分析曲線圖 71 72 圖 4-4-H 化合物4之紫外光/可見光光譜圖 圖 4-4-I 化合物4之螢光光譜圖 72 圖 4-4-J 化合物 [Zn2(bpp)(pht)2]n結構與鍵長示意圖 73 圖 4-4-K 化合物[Cu(NO₃)₂(bpp)]₂·2CH₂Cl₂結構與鍵長示意圖 74 圖 4-5-A 化合物5晶體結構圖 75 76 圖 4-5-B 化合物5結構間距圖 圖 4-5-C 化合物5之space filling圖 76 圖 4-5-D (a) 化合物 5 之 晶體 堆 疊圖 (由 a 軸看); (b) 化合物 5 之 晶體 堆 疊圖 (由 c 軸看) 79 圖 4-5-E 化合物5之红外線吸收光譜圖 80 圖 4-5-F 化合物5晶體粉末繞射圖(上)與理論繞射圖(下) 80 圖 4-5-G 化合物5之熱重量分析曲線圖 81 圖 4-5-H 化合物5之紫外光/可見光光譜圖 81

65

圖 4-3-E 化合物3之晶體堆疊圖

圖 4-5-I	化合物5之萤光光譜圖	82
圖 4-6-A	化合物6晶體結構圖	83
圖 4-6-B	化合物6結構間距圖	84
圖 4-6-C	化合物6之space filling圖	84
圖 4-6-D	(a)化合物6之晶體堆疊圖(由a軸看);(b)化合物7之晶體堆疊圖(由	
	c 軸看)(皆省略氫原子,灰色為對二甲苯)	85
圖 4-6-E	化合物6之紅外線吸收光譜圖	86
圖 4-6-F	化合物6之熱重量分析曲線圖	86
圖 4-6-G	化合物6之紫外光/可見光光譜圖	87
圖 4-6-H	化合物6之螢光光譜圖	88
圖 4-7-A	化合物7晶體結構圖	89
圖 4-7-B	化合物7結構間距圖	90
圖 4-7-C	化合物7之space filling圖	90
圖 4-7-D	(a)化合物7之晶體堆疊圖; (b)化合物7之晶體堆疊示意圖	91
圖 4-7-E	化合物7之紅外線吸收光譜圖	92
圖 4-7-F	化合物7之熱重量分析曲線圖	92
圖 4-7-G	化合物7之紫外光/可見光光譜圖	93
圖 4-7-H	化合物7之螢光光譜圖	93

表目錄

表 1-1	氫鍵的鍵長與強度	7
表 3-1	[Re4(CO)12(bpe)2(OC4H9)4] (1)晶體數據	39
表 3-2	[Re2(CO)6(bpe)(BiBzIm)] (2) 晶體數據	41
表 3-3	[Re4(CO)12(bpe)2(THBQ)] · (C6H6)2(3) 晶體數據	43
表 3-4	[Re2(CO)6(bpp)(OCH3)2] (4) 晶體數據	45
表 3-5	[Re2(CO)6(bpp)(ox)] (5) 晶體數據	47
表 3-6	[Re ₂ (CO) ₆ (bpp)(BiBzIm)] · 0.25(C ₈ H ₁₀) (6) 晶體數據	49
表 3-7	[Re2(CO)6(bpp)(DHBQ)] (7)晶體數據	51
表 4-1	化合物1之重要氫鍵距離(Å)及鍵角(deg)示意表	52
表 4-2	化合物2之重要氫鍵距離(Å)及鍵角(deg)示意表	57
表 4-3	化合物3之重要氫鍵距離(Å)及鍵角(deg)示意表	64
表 4-4	化合物4之重要氫鍵距離(Å)及鍵角(deg)示意表	68
表 4-5	化合物5之重要氫鍵距離(Å)及鍵角(deg)示意表	75
表 4-5-1	酸性環境下之影響關係表	77
表 4-5-2	增加碳源之影響關系表	78
表 4-5-3	通入乾冰及 CO2 之影響關系表	78
表 4-6	化合物 6 之重要氫鍵距離(Å)及鍵角(deg)示意表	83
表 4-7	化合物7之重要氫鍵距離(Å)及鍵角(deg)示意表	89
表 4-A	化合物 4-7 之重要鍵長	95