English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 46962/50828 (92%)
造訪人次 : 12385709      線上人數 : 1091
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    主頁登入上傳說明關於CCUR管理 到手機版


    請使用永久網址來引用或連結此文件: https://irlib.pccu.edu.tw/handle/987654321/53839


    題名: 量子自旋電子學和通信中的糾纏、熵和幾何相位物理( I )
    Entanglement, Entropy and Geometric Phase Physics in Quantum Spintronics and Communications( I )
    作者: 陳繩義
    貢獻者: 中國文化大學光電物理學系
    關鍵詞: 糾纏

    負性
    幾何相位
    拓撲相位
    自旋電子學
    光子學
    量子通信
    曲率
    Entanglement
    entropy
    negativity
    geometric phase
    topological phase
    spintronics
    photonics
    quantum communication
    curvature
    日期: 2024
    上傳時間: 2024-12-27 12:39:01 (UTC+8)
    摘要: Entanglement introduces an instantaneous correlation between quantum particles and that challenges classical intuitions. We see a pressing need to develop a comprehensive understanding of the application of quantum entanglement in modern fields like spintronics, photonics, and quantum communication. Concurrently, entropy - a classical measure of disorder - is an ideal mathematical method to play a similar role in the quantum system, i.e. quantifying the information content of an entangled system. On top of that, new methods like concurrence and negativity provide additional measurement for more complicated systems like in mixed states entanglement. Adding another layer to this intricate connection is the quantum phase - a phenomenon arising from the quantum evolution of a system's wave function – which comprises the dynamic, geometric and topological components. The major significance of this project lies not only in its potential to unravel more intricate connection between entanglement and the quantum phases as a theoretical pursuit, but also in its practical implications for emerging technologies in the fields of quantum spintronics, photonics and communications. Study may lead to new quantum technologies that could be realized in the nanoscience platforms of spintronics and photonics as well as in the fields of communication, e.g. quantum radar or teleportation. This study would lead naturally to a greater understanding of the physics of entanglement on quantum transport and curvature. This, we hope, may lead to a preliminary understanding of how gravity may have an impact on photon-based quantum communication.
    顯示於類別:[光電物理系] 研究計畫

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML8檢視/開啟


    在CCUR中所有的資料項目都受到原著作權保護.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋