文化大學機構典藏 CCUR:Item 987654321/53707
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 47061/50927 (92%)
Visitors : 13321202      Online Users : 1488
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: https://irlib.pccu.edu.tw/handle/987654321/53707


    Title: 國際恐慌事件市場預測之績效研究 —以台灣熊市為例
    Performance Study of Market Predictions During International Panic Events: Take the Taiwan Bear Market as an Example
    Authors: 丁英哲
    Ting, Ying-Che
    Contributors: 企業實務管理數位碩士在職專班
    Keywords: LSTM模型
    ARIMA模型
    國際恐慌事件
    long short-term memory model
    autoregressive integrated moving average model
    international panic events
    Date: 2024
    Issue Date: 2024-11-27 15:19:19 (UTC+8)
    Abstract: 本研究旨在探討並比較ARIMA(差分整合移動平均自我迴歸模型)模型與LSTM(長短期記憶)模型在國際恐慌事件期間對市場預測的績效。考慮到全球市場在面對重大政治、經濟或社會動蕩時的反應,本研究選取了具有代表性的國際恐慌事件作為研究對象,分析了這些事件對全球金融市場的影響。透過ARIMA模型,我們評估了線性時間序列分析在捕捉市場短期波動方面的能力。另一方面,LSTM模型則用於檢測市場對這些恐慌事件的長期和非線性反應。研究結果揭示了兩種模型在不同市場情況下的優缺點,並提供了在複雜市場環境下進行有效預測的見解。此外,本研究的發現對於金融分析師和投資者在理解市場動態以及制定應對策略時具有重要的實用意義。
    This study aims to explore and compare the performance of ARIMA (Autoregressive Moving Average) and LSTM (Long Short-Term Memory) models in market predictions during international panic events. Recognizing the global market's response to major political, economic, or social upheavals, this research selected representative international panic events to analyze their impact on the global financial markets. Through the ARIMA model, we assessed the capability of linear time series analysis in capturing short-term market fluctuations. On the other hand, the LSTM model was utilized to detect long-term and non-linear responses of the market to these panic events. The results of the study reveal the strengths and weaknesses of both models under different market conditions and provide insights for effective forecasting in complex market environments. Additionally, the findings of this research hold practical significance for financial analysts and investors in understanding market dynamics and formulating response strategies.
    Appears in Collections:[Master program of business administration in practicing] thesis

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML90View/Open


    All items in CCUR are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback