English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 46965/50831 (92%)
造訪人次 : 12743367      線上人數 : 306
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    主頁登入上傳說明關於CCUR管理 到手機版


    請使用永久網址來引用或連結此文件: https://irlib.pccu.edu.tw/handle/987654321/53286


    題名: 大專棒球投手投球動力鍊對於投球精準度的影響
    The Influence of Kinetic Chain on Pitching Accuracy in College Baseball Pitchers
    作者: 趙祥雲
    貢獻者: 體育學系運動教練碩博士班
    關鍵詞: 棒球控球
    投球機制
    投球動力鍊
    大專棒球投手
    肢段順序
    baseball pitching control
    pitching mechanics
    pitching kinetic chain
    college baseball pitcher
    limb sequence
    日期: 2024
    上傳時間: 2024-03-21 12:00:12 (UTC+8)
    摘要: 本研究透過運動學分析投球時各肢段最大角速度出現的時間與順序,了解各肢段最大角速度與其出現的順序對於投球精準度的相關性,並在投球時同步收集運動學數據、各肢段角速度、控球位置軌跡偏移量 (pitch location trajectory) 、控球水平偏移量與控球垂直偏移量、放球點垂直高度與水平距離、垂直與水平投球角度進行分析。方法:本研究招募10位大專層級的棒球投手,實驗對象穿戴動作分析系統感應器,充分熱身後,朝距離投手板18.5公尺之帆布好球帶,投擲15顆直球,並以實驗對象後方的攝影機拍攝球在帆布好球的落點做為進壘點,可攜帶式棒球數據分析系統記錄該球至球速、轉速、旋轉效率、放球點、投球角度,動作分析系統則收集各肢段角速度,後續進行肢段發力順序 (即肢段加速至峰值角速度順序) 分析;以Pearson 相關性分析運動學數據、放球點垂直高度與放球點水平距離、垂直與水平投球角度與控球位置軌跡偏移量、控球水平偏移量與控球垂直偏移量的關係,以Spearman相關性分析肢段順序種類數量與控球位置軌跡偏移量、控球水平偏移量與控球垂直偏移量的關係,顯著水準設為 α=0.05。結果:以下實驗參數與投球精準度有顯著相關:控球位置軌跡偏移量與球出手時的肩水平外展 (r=-0.14, p=0.047) 相關,控球水平偏移量與前導腳著地時的軀幹側彎角度 (r=-0.89, p=0.001) 、前導腳著地時的投球手肩水平外展角度 (r=0.76, p=0.01) 、球出手時的投球手肩水平外展角度 (r=0.65, p=0.03) 、前導腳著地時的軀幹旋轉角度 (r=0.65, p=0.03) 相關;描述性統計部分,以肢段順序種類為組別分類,出現較多的肢段順序種類數量的組別與控球位置軌跡偏移量並無顯著差異,但1234組控球位置軌跡偏移量為最低 (15.97cm) 。結論:不光是單一運動學數據就能決定投球精準度都的好壞,還需要各肢端的相互配合,其中肩胛與軀幹運動的相互配合尤為重要,不僅能影響投球的精準度,也能使投球動力鍊更加完整,以提升運動表現。
    This study aims to analyze the timing and sequence of maximal angular velocities of different body segments during pitching through kinematic analysis. It seeks to understand the relationship between the maximal angular velocities of these segments, their sequence, and pitching accuracy. Concurrently, the study collects kinematic data, angular velocities of each body segment, deviations in pitch location trajectory, horizontal and vertical deviations of ball control, vertical height and horizontal distance of the release point, and vertical and horizontal pitching angles. Methods: Ten collegiate-level baseball pitchers were recruited for this study. Participants wore motion analysis system sensors, warmed up thoroughly, and then pitched 15 fastballs towards a strike zone canvas located 18.5 meters from the pitcher's mound. A camera positioned behind the subjects captured the ball's landing point on the canvas as the entry point into the strike zone. A portable baseball data analysis system recorded the ball's speed, spin rate, spin efficiency, release point, and pitching angles. The motion analysis system collected angular velocities of each body segment, followed by an analysis of the sequence of limb power generation (i.e., the sequence of acceleration to peak angular velocity). Pearson correlation analysis was used to assess the relationships between kinematic data, vertical height and horizontal distance of the release point, vertical and horizontal pitching angles, and deviations in pitch location trajectory, horizontal and vertical ball control deviations. Spearman correlation analysis examined the relationship between the number of limb sequence types and deviations in pitch location trajectory, horizontal and vertical ball control deviations, with a significance level set at α = 0.05. Results: The following experimental parameters showed significant correlation with pitching accuracy: deviation in pitch location trajectory correlated with shoulder horizontal abduction at ball release (r=-0.14, p=0.047); horizontal deviation in ball control correlated with trunk lateral bending angle when the lead foot landed (r=-0.89, p=0.001), shoulder horizontal abduction angle of the pitching hand when the lead foot landed (r=0.76, p=0.01), shoulder horizontal abduction angle of the pitching hand at ball release (r=0.65, p=0.03), and trunk rotation angle when the lead foot landed (r=0.65, p=0.03). In descriptive statistics, groups classified by types of limb sequence showed no significant difference in the amount of deviation in pitch location trajectory, but the group with sequence type 1234 had the lowest deviation (15.97cm). Conclusion: Not only a single kinematic data point determines the quality of pitching accuracy, but also the coordination among various body segments is crucial. The cooperative movement of the scapula and trunk is particularly important, not only affecting pitching accuracy but also completing the pitching kinetic chain to enhance performance.
    顯示於類別:[運動教練研究所] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML120檢視/開啟


    在CCUR中所有的資料項目都受到原著作權保護.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋