English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 47121/50987 (92%)
造訪人次 : 13828841      線上人數 : 232
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    主頁登入上傳說明關於CCUR管理 到手機版


    請使用永久網址來引用或連結此文件: https://irlib.pccu.edu.tw/handle/987654321/51211


    題名: 以遺傳規劃法建立聚苯乙烯高分子之玻璃轉化溫度估計模式
    Establishing Glass Transition Temperature Estimation Model of Polystyrene Polymer by Genetic Programming
    作者: 林泓全
    貢獻者: 化學工程與材料工程學系奈米材料碩士班
    關鍵詞: 玻璃轉化溫度
    遺傳規劃法
    Glass transition temperature
    Genetic programming
    日期: 2021
    上傳時間: 2023-02-25 13:35:33 (UTC+8)
    摘要: 在本論文中使用兩組四個參數的描述因子,第一組包括:ChiA_B(e)、SpMax_EA(bo)、H7s和DLS_01,第二組包括:RSC、SMC、DHB和MPE來估計107個高分子的玻璃轉化溫度,上述描述因子是分子結構、拓撲和量子化學的相關函數。本研究中分別以多元線性迴歸分析與遺傳規劃法來建造玻璃轉化溫度的估計模式。在本研究中透過調整族群代數、族群大小、模型複雜度、基因樹深度和基因組數量等參數來獲得效能更好的遺傳規劃法估計模式,經過訓練組的訓練與驗證組的驗證測試,第一組分別得到了低度複雜度遺傳規劃法估計模式其訓練組均方根誤差為14.88K(R2=0.9247)與驗證組16.51K(R2=0.91062),中度複雜度遺傳規劃法估計模式其訓練組均方根誤差為14.55K(R2=0.92787)與驗證組15.54K(R2=0.9203)以及高度複雜度遺傳規劃法估計模式其訓練組均方根誤差為13.81K(R2=0.923547)與驗證組13.78K(R2=0.93889)的結果,第二組分別得到了低度複雜度遺傳規劃法估計模式其訓練組均方根誤差為14.18K(R2=0.9259)與驗證組19.18K(R2=0.91812),中度複雜度遺傳規劃法估計模式其訓練組均方根誤差為13.82K(R2=0.92952)與驗證組18.36K(R2=0.92493)以及高度複雜度遺傳規劃法估計模式其訓練組均方根誤差13.06(R2=0.93715)與驗證組15.40K(R2=0.95164)的結果。測試結果與其他現存的估計模式比較,顯示以遺傳規劃法模式估計聚苯乙烯高分子玻璃轉化温度可以得到較為準確的估計值。
    In this study, two sets of four parameter description factors are used. The first set includes: RSC, SMC, DHB and MPE, and the second set includes: ChiA_B(e), SpMax_EA(bo), H7s and DLS_01 to estimate the glass transition temperature of 107 polimers. The above described factors are related functions of molecular structure, topology and quantum chemistry. In this study, multiple linear regression analysis and genetic programming were used to construct the estimating model of the glass transition temperature. In this study, we adjusted the parameters of population algebra, population size, model complexity, gene tree depth, and genome number to obtain a more efficient genetic programming estimation model. After training by the training group and verification tests by the verification group, the first group obtained the low-complexity genetic programming method estimation model ,the root mean square error of the training group was 14.88K (R2=0.9247) and the verification group was 16.51K (R2=0.91062), in the medium complexity genetic programming method, the root mean square error of the training group is 14.55K (R2=0.92787) and the verification group is 15.54K (R2=0.9203) and the high complexity genetic programming method estimates the root mean square error of the training group is 13.81K (R2=0.923547) and the verification group is 13.78K (R2=0.93889). The second group obtained the low-complexity genetic programming estimation model, the root mean square error of the training group was 14.18K (R2=0.9259) and the verification group was 19.18K (R2=0.91812) , the medium-complexity genetic programming method estimates the root mean square error of the training group is 13.82K (R2=0.92952) and the verification group 18.36K (R2=0.92493) and the high complexity genetic programming method estimates the root mean square error of the training group is 13.06K (R2=0.93715) and the verification group is 15.40K (R2=0.95164). Compared with other existing estimation models, the test results show that the genetic programming method can be used to estimate the glass transition temperature of polystyrene polymers to obtain more accurate estimates.
    顯示於類別:[化學工程與材料工程學系暨碩士班] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML72檢視/開啟


    在CCUR中所有的資料項目都受到原著作權保護.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋