文化大學機構典藏 CCUR:Item 987654321/51202
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 46965/50831 (92%)
造访人次 : 12651104      在线人数 : 565
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻
    主页登入上传说明关于CCUR管理 到手机版


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: https://irlib.pccu.edu.tw/handle/987654321/51202


    题名: 應用決策樹與類神經網路建立繼續經營預測模型
    Construction of Going Concern Prediction Models by Using Decision Tree and Artificial Neural Network
    作者: 麥銳光
    贡献者: 會計學系
    关键词: 繼續經營預測
    類神經網路
    貝氏網路
    決策樹C5.0
    區別分析
    going concern prediction
    artificial neural network
    bayesian network
    decision tree C5.0
    discriminant analysis
    日期: 2021
    上传时间: 2023-02-25 12:56:45 (UTC+8)
    摘要: 鑑於過往發生過多次全球財政危機讓投資人損失慘重,本研究旨在利用機器學習技術中的類神經網路、區別分析、貝氏網路以及決策樹C5.0等方法,嘗試建立繼續經營預測模型。本研究之樣本選取取自台灣經濟新報資料庫(TEJ),研究對象為2010年至2019年之上市上櫃及下市下櫃公司,採用以一家繼續經營存有疑慮之公司及與該樣本相同年度及產業別的正常企業分別以1:1及1:3的方式進行配對。實證結果顯示無論以1:1或1:3的比例進行比對,決策樹C5.0的平均準確率皆為三種研究方法中最高,分別為87.98%與86.98%。
    Due to investors have suffered heavy losses from multiple global financial crises in the past, the aim of this research is using machine learning such as artificial neural network, bayesian network, decision tree C5.0 and discriminant analysis etc to construct a going concern prediction model. The samples of this study were selected from Taiwan Economic Journal (TEJ), targeting both the listed and unlisted companies between 2010-2019. We compared a company who has concern in continuous operating the business with a normal company in the same year same industry in the ratio of 1:1 and 1:3. The results of research show that regardless of which ratio to apply, the average accuracy of decision tree C5.0 are 87.98% and 86.98% respectively, which is the highest among the three research methods.
    显示于类别:[會計學系暨研究所 ] 博碩士論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML133检视/开启


    在CCUR中所有的数据项都受到原著作权保护.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈