文化大學機構典藏 CCUR:Item 987654321/51163
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 46962/50828 (92%)
Visitors : 12458769      Online Users : 546
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: https://irlib.pccu.edu.tw/handle/987654321/51163


    Title: 智慧型雙足機器人之設計與實現
    Design and Implementation of Smart Biped Robot
    Authors: 許哲維
    Contributors: 機械工程學系數位機電碩士班
    Keywords: 機器學習
    微控制器
    足部軌跡規劃
    正逆向運動學
    性倒單擺步態控制
    Machine learning
    Microcontroller
    Foot trajectory planning
    Forward and inverse kinematics
    Linear inverted pendulum gait control
    Date: 2022
    Issue Date: 2023-02-23 14:43:18 (UTC+8)
    Abstract: 如今在機器學習如此成熟的年代,利用深度學習來替人們工作已是現在的趨勢,不僅能夠高效辨識各種物體以及事物,還能廣泛應用在各種不同領域,替人們減輕許多負擔,經過許多的比較後。本研究的第一部分選擇將YOLOV4作為辨識用模型,因運算量小無須連結伺服器主機,能精確辨識物體且運算快速的特性,適合在本研究中採用, 因此選擇YOLOV4作為辨識用神經網路來訓練,為了改善只有視覺作為避障的唯一傳感器,本研究的第二部分是加入景深相機D435i,配合YOLOV4神經網路便可以更精準地測量前方障礙物的距離以及深度關係。本研究的第三部分是設計一套輕巧智能的控制器以實現上述的障礙辨識能力,第四部份為雙足機器人機構設計,在自然界中有許多雙足步行的生物,其獨特的形式就算在滿是障礙物的區域,其機動性仍然非常高,因此本研究選擇使用雙足機器人進行避障,並參考雙足生物鴕鳥後進行設計。在未來硬體效能越來越強大且體積越來越小,便能夠設計出像人類般高速辨識且高機動性的雙足機器人,不僅可以代替人類完成高危險的工作,也可以協助搬運物資到交通工具無法到達的地方等等。

    In this age, when machine learning is so mature, it is a trend to use deep learning to work for people, not only to recognize various objects and things efficiently but also to apply in various fields and to reduce the burden for people. The YOLOV4 neural network was adopted to recognize in the first part of this research. Because of YOLOV4’s low computational power, no need to connect to a server, its ability to recognize objects accurately, and its fast computational characteristics, so it is suitable for this study. In order to promote the performance of obstacle avoidance. The second part of this research is to add the depth camera D435i which together with the YOLOV4 neural network, can more accurately measure the distance and depth relationship of obstacles ahead. The third part is to design a set of lightweight and smart controller to achieve the above mentioned obstacle recognition ability. The fourth part is the mechanical design of biped robot. Some simulation and experimental results are provided in this research. Furthermore, a biped robot prototype is implemented. We hope the implemented biped robot can not only replace human beings to complete high risk jobs, but also can assist in transporting materials.
    Appears in Collections:[Department of Mechanical Engineering ] thesis

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML138View/Open


    All items in CCUR are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback