文化大學機構典藏 CCUR:Item 987654321/51142
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 47249/51115 (92%)
造访人次 : 14181121      在线人数 : 508
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻
    主页登入上传说明关于CCUR管理 到手机版


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: https://irlib.pccu.edu.tw/handle/987654321/51142


    题名: 使用鑄造業回收物製造 使用溫度1600oC可塑性耐火泥
    Discussion on the Use of Foundry Recycling to Make 1600oC Plasticity Refractory Mud
    作者: 洪丞奕
    贡献者: 化學工程與材料工程學系奈米材料碩士班
    关键词: 回收鑄造砂
    耐火材料
    矽酸鋯
    莫萊石
    耐腐蝕
    鑄造再生砂
    模殼
    recycled foundry sands
    refractory
    zirconium
    corrosion resistance
    foundry sand
    shell mold
    日期: 2022
    上传时间: 2023-02-23 10:18:03 (UTC+8)
    摘要: 全球環保意識抬頭及節能減碳的議題越來越受到重視,資源回收利用成為熱門的研究課題。在台灣鑄造產業是本國相當重要的基礎產業,以生產高品質產品聞名全球,可是在高產率的背後就有高廢棄物的產生,本研究利用鑄造業的回收鑄造砂(再利用廢棄物代碼 R-1201) 回收利用製作成實際應用於熔爐及鋼鐵工業等所用的可塑性耐火泥,利用其中含有SiO2 、Al2O3和矽酸鋯,均為製作耐火材料主要成分,經過分析確定成分,以不同配比投入攪拌機內用不同轉速及水量充分攪拌混合,經真空練土機攪拌後擠出切塊包裝,成品裝箱。
    首先收集可塑性耐火泥的原料、製程技術、檢測方法及相關文獻,在取得回收物後進行成分分析,分析後將資料與收集到的文獻進行交叉比對,整理出各理論成分配比和實驗計畫及製作方法,最後樣品製作完成時,測試體密度、抗壓強度、再熱收縮等…數據,其中抗侵蝕實驗最為重要,由於熔爐中的鋼液有熔損的特性,如果沒有經過耐侵蝕實驗會導致熔爐,盛鋼桶鋼液洩漏。本次實驗的模殼回收料中分析出含有矽酸鋯,所以本次實驗以配置耐火材料中加入氧化鋯來探討矽酸鋯對耐火泥的影響。發現隨著矽酸鋯的增加其體密度逐漸增加和抗壓強度逐漸增加和耐侵蝕性更佳,用鑄造業回收模殼製作,可塑性耐火泥成品符和ASTM C64-72 High-Duty grade 的規範進行比對。
    The global awareness of environmental protection and the issues of energy conservation and carbon reduction have received more and more attention, and resource recycling has become a hot research topic。 The foundry industry in Taiwan is a very important basic industry in the country. It is famous all over the world for producing high-quality products. However, behind the high yield, there is a high waste. This study uses the recovered foundry sand (recycled waste code R-1201) Recycled and made into plastic refractory mud that is actually used in furnaces and iron and steel industries. It contains Al2O3 and zirconium silicate, which are the main components of refractory materials. The components are determined by analysis and put into mixers in different proportions. Different rotating speed and water volume are fully mixed and mixed, extruded and cut into pieces after being vacuumized and mixed, and the finished products are packed into boxes.
    First, collect the raw materials, process technology, testing methods and related literatures of plastic refractory clay. After obtaining the recyclables, conduct component analysis. After the analysis, cross-comparison the data with the collected literature to sort out the theoretical component ratios and experimental calculations. Drawing and production method, when the final sample is finished, test the data of body density, compressive strength, reheat shrinkage, etc., among which the corrosion resistance test is the most important. It will lead to leakage of molten steel in the furnace and ladle. The raw materials of this experiment were analyzed to contain zirconium silicate, so this experiment used zirconium oxide to be added to the refractory material to explore the effect of zirconium silicate on the refractory mud. It was found that with the increase of zirconium silicate, its bulk density and compressive strength gradually increased, and the finished plastic refractory clay was compared with the specification of ASTM C64-72 High-Duty grade.
    显示于类别:[化學工程與材料工程學系暨碩士班] 博碩士論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML204检视/开启


    在CCUR中所有的数据项都受到原著作权保护.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈