文化大學機構典藏 CCUR:Item 987654321/49483
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 46867/50733 (92%)
造访人次 : 11887621      在线人数 : 822
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻
    主页登入上传说明关于CCUR管理 到手机版


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: https://irlib.pccu.edu.tw/handle/987654321/49483


    题名: The Oxygen-Generating Calcium Peroxide-Modified Magnetic Nanoparticles Attenuate Hypoxia-Induced Chemoresistance in Triple-Negative Breast Cancer
    作者: Cheng, FY (Cheng, Fong-Yu)
    Chan, CH (Chan, Chia-Hsin)
    Wang, B (Wang, Bour-, Jr.)
    Yeh, YL (Yeh, Ya-Ling)
    Wang, YJ (Wang, Ying-Jan)
    Chiu, HW (Chiu, Hui-Wen)
    贡献者: 化學系
    关键词: hypoxia
    nanocarriers
    chemoresistance
    triple-negative breast cancer
    autophagy
    日期: 2021-02
    上传时间: 2021-04-14 16:09:57 (UTC+8)
    摘要: Tumor hypoxia is known to increase the resistance of cancer cells to chemotherapy. Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer and lack of target. Therefore, chemotherapy is the only approved systemic treatment in TNBC. Here, we synthesized the calcium peroxide-modified magnetic nanoparticles (CaO2-MNPs) with the function of oxygen generation to improve and enhance the therapeutic efficiency of doxorubicin treatment in the hypoxia microenvironment of TNBC. CaO2-MNPs promoted ubiquitination and protein degradation of hypoxia-inducible factor 1 alpha (HIF-1 alpha). Furthermore, CaO2-MNPs inhibited autophagy and induced apoptosis in TNBC cells. CaO2-MNPs in combination with doxorubicin showed a stronger tumor-suppressive effect on TNBC compared to the doxorubicin treatment alone in an orthotopic mouse model. Our findings suggest that combined with CaO2-MNPs and doxorubicin attenuates HIF-1 alpha expression to improve the efficiency of chemotherapy in TNBC.

    Cancer response to chemotherapy is regulated not only by intrinsic sensitivity of cancer cells but also by tumor microenvironment. Tumor hypoxia, a condition of low oxygen level in solid tumors, is known to increase the resistance of cancer cells to chemotherapy. Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer. Due to lack of target in TNBC, chemotherapy is the only approved systemic treatment. We evaluated the effect of hypoxia on chemotherapy resistance in TNBC in a series of in vitro and in vivo experiments. Furthermore, we synthesized the calcium peroxide-modified magnetic nanoparticles (CaO2-MNPs) with the function of oxygen generation to improve and enhance the therapeutic efficiency of doxorubicin treatment in the hypoxia microenvironment of TNBC. The results of gene set enrichment analysis (GSEA) software showed that the hypoxia and autophagy gene sets are significantly enriched in TNBC patients. We found that the chemical hypoxia stabilized the expression of hypoxia-inducible factor 1 alpha (HIF-1 alpha) protein and increased doxorubicin resistance in TNBC cells. Moreover, hypoxia inhibited the induction of apoptosis and autophagy by doxorubicin. In addition, CaO2-MNPs promoted ubiquitination and protein degradation of HIF-1 alpha. Furthermore, CaO2-MNPs inhibited autophagy and induced apoptosis in TNBC cells. Our animal studies with an orthotopic mouse model showed that CaO2-MNPs in combination with doxorubicin exhibited a stronger tumor-suppressive effect on TNBC, compared to the doxorubicin treatment alone. Our findings suggest that combined with CaO2-MNPs and doxorubicin attenuates HIF-1 alpha expression to improve the efficiency of chemotherapy in TNBC.
    關聯: CANCERS 卷冊: 13 期: 4 文獻號碼: 606
    显示于类别:[化學系所] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML193检视/开启


    在CCUR中所有的数据项都受到原著作权保护.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈