English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 46962/50828 (92%)
造訪人次 : 12457436      線上人數 : 604
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    主頁登入上傳說明關於CCUR管理 到手機版


    請使用永久網址來引用或連結此文件: https://irlib.pccu.edu.tw/handle/987654321/48776


    題名: Predicting the emission wavelength of organic molecules using a combinatorial QSAR and machine learning approach
    作者: Ye, ZR (Ye, Zong-Rong)
    Huang, IS (Huang, I-Shou)
    Chan, YT (Chan, Yu-Te)
    Li, ZJ (Li, Zhong-Ji)
    Liao, CC (Liao, Chen-Cheng)
    Tsai, HR (Tsai, Hao-Rong)
    Hsieh, MC (Hsieh, Meng-Chi)
    Chang, CC (Chang, Chun-Chih)
    Tsai, MK (Tsai, Ming-Kang)
    貢獻者: 化材系
    關鍵詞: MODEL
    日期: 2020-06-23
    上傳時間: 2020-11-03 15:31:42 (UTC+8)
    摘要: Organic fluorescent molecules play critical roles in fluorescence inspection, biological probes, and labeling indicators. More than ten thousand organic fluorescent molecules were imported in this study, followed by a machine learning based approach for extracting the intrinsic structural characteristics that were found to correlate with the fluorescence emission. A systematic informatics procedure was introduced, starting from descriptor cleaning, descriptor space reduction, and statistical-meaningful regression to build a broad and valid model for estimating the fluorescence emission wavelength. The least absolute shrinkage and selection operator (Lasso) regression coupling with the random forest model was finally reported as the numerical predictor as well as being fulfilled with the statistical criteria. Such an informatics model appeared to bring comparable predictive ability, being complementary to the conventional time-dependent density functional theory method in emission wavelength prediction, however, with a fractional computational expense.
    關聯: RSC ADVANCES 卷冊: 10 期: 40 頁數: 23834-23841
    顯示於類別:[化學工程與材料工程學系暨碩士班] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML154檢視/開啟


    在CCUR中所有的資料項目都受到原著作權保護.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋