文化大學機構典藏 CCUR:Item 987654321/48664
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 47225/51091 (92%)
Visitors : 13996891      Online Users : 228
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: https://irlib.pccu.edu.tw/handle/987654321/48664


    Title: 時間域解迴旋在反演震源時間函數的應用(II)
    An Application of Time-Domain Deconvolution to the Estimation of Source Time Function by Using an Inversion Technique ( II )
    Authors: 黃瑞德
    Contributors: 地質學系
    Keywords: 震源時間函數
    上揚破裂域解迴旋經驗格林
    非負解
    Date: 2015
    Issue Date: 2020-09-30 14:45:24 (UTC+8)
    Abstract: 震源時間函數是了解物理的重要參之一。不僅記錄破裂歷 震源時間函數是了解物理的重要參之一。不僅記錄破裂歷 震源時間函數是了解物理的重要參之一。不僅記錄破裂歷 震源時間函數是了解物理的重要參之一。不僅記錄破裂歷 震源時間函數是了解物理的重要參之一。不僅記錄破裂歷 震源時間函數是了解物理的重要參之一。不僅記錄破裂歷 時,也記錄了震源的破裂特徵。間函數 時,也記錄了震源的破裂特徵。間函數 時,也記錄了震源的破裂特徵。間函數 時,也記錄了震源的破裂特徵。間函數 時,也記錄了震源的破裂特徵。間函數 時,也記錄了震源的破裂特徵。間函數 的歷時 包含了兩個時間,一是 含了兩個時間,一是 含了兩個時間,一是 震源上揚時間 , 另一個是 破裂時間 ,這兩個時間反映出地震不同的破裂 這兩個時間反映出地震不同的破裂 特性 。一般 評估震源 評估震源 時間函數 的方法 主要是利用 主震與其附近之小地間 進行解迴旋,此法稱為經驗格林函數一般可在時主震與其附近之小地間 進行解迴旋,此法稱為經驗格林函數一般可在時主震與其附近之小地間 進行解迴旋,此法稱為經驗格林函數一般可在時主震與其附近之小地間 進行解迴旋,此法稱為經驗格林函數一般可在時主震與其附近之小地間 進行解迴旋,此法稱為經驗格林函數一般可在時主震與其附近之小地間 進行解迴旋,此法稱為經驗格林函數一般可在時域或頻率從事經驗格林函數法求解震源時間。在將主譜 與域或頻率從事經驗格林函數法求解震源時間。在將主譜 與域或頻率從事經驗格林函數法求解震源時間。在將主譜 與相 除, 會因格林函數頻譜太小 因格林函數頻譜太小 易造成在相除後有異常放大的 現象 ,水準解迴旋 ,水準解迴旋 ,水準解迴旋 經常被採用去抑 制這樣的現象。 制這樣的現象。 在時間域的解迴旋,基本上與逆推法有關,為使逆推穩定,可在逆推過程加入阻尼或平滑化因子。無論何種方法,使解迴旋能夠穩定將是求解震源時間函數的首要條件,因此,利用解迴旋穩定求出震源時間函數仍具挑戰性。本研究擬利用時間域解迴旋配合逆推法求解震源時間函數,在此研究中以在主震位置產生不含震源時間函數的合成震波當成是經驗格林函數,並採用阻尼平滑化逆推法求解震源時間函數。之後,將本研究所提的方法應用在數個大地震的震源時間函數研究上。本研究是規劃為三年期計畫,本次申請為第二年 及第三年 。在第二 年中, 將加入 非負 解到時間域解迴中, 並著重 利用 震源時間函數分析 大地 震的破裂速度 變化;在第三 年中,將利用 震源時間函數逆推震源破裂模型。
    Source time function (STF) is one of important source parameters to understand the physics of earthquakes. The STF records not only the source duration but also the features of ruptures. Generally, the source duration of an earthquake is composed of two times: one is the rise time and the other is the rupture time. The two times can account for different characteristics of faulting during an earthquake. Empirical Green’s function method (EGF method) is usually used to extract the STF from the main shock using the so-called deconvolution, which can be performed in frequency-domain or time-domain. In frequency-domain, the water-level deconvolution is a common method to obtain the STF because it can suppress the problem of spectral hole. Comparatively, to get the STF using time-domain deconvolution is related to the inversion technique. To make the inversion stable in the time-domain deconvolution, we can add damping values or smoothing factors to the inversion. In any case, to make the deconvolution stable is the most important condition in the use of EGF method. For this reason, it is worthy to challenge how to make the deconvolution stable in time-domain or frequency-domain. In this study, we develop a damped inversion method with smoothing constraint to catch the STF from the main shock. In addition, the theoretical waveform produced in the location of the main shock is regarded as the EGF, convenient to complete the deconvolution. The follow-up study will use the proposed method to investigate the STFs of large earthquakes. Basically, the duration of this proposal was designed to be three years. In the program of the second year, this study will focus on estimating the rupture velocity variations for large earthquakes using the derived STFs. In addition, we also added a constraint with non-negative solutions into time-domain deconvolution to make the deconvolution more stable. In the program of the third year, we will invert the source rupture model for earthquakes using the derived STFs.
    Appears in Collections:[Department of Geology] project

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML219View/Open


    All items in CCUR are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback