近十年來,由於IC科技的快速發展,人們對於可攜式資訊的追求越來越強烈,如此一來,具備輕、薄、耐摔甚至可捲撓等特性的電子產品,即「軟性電子」即是在這種種的情況下所醞釀出來的。正如2007年的Organic Electronic Conference (OEC 2007)會議所提出的未來市場趨勢的預測,及IDTechEx所指出,可撓式感測器將是未來幾年開發與發展重點,結合無線通訊及RFID 等技術,可增加自動偵測與自動回答之要求,將有效提供人類更具安全與便利之生活。 近年來全世界對於奈米材料廣泛的研究,是因為奈米材料具有高表面積、高表面能量之特性,對化學物質具有高吸附能力與高化學結合能力之特性。因此將奈米無機材料與有機材料互相結合,製備出一種新穎的奈米複合材料。過去本實驗室以奈米SiO2、奈米碳管及奈米TiO2為主,製備一系列的奈米複合材料於濕度及氣體感測器之應用,已有多篇的文獻發表至國際期刊。在製備感測元件過程中,奈米複合材料本身會有奈米粒子分散的問題,同時在薄膜的製備技術上如薄膜的膜厚控制、表面結構的孔洞性等因素,造成感測元件會有批次間感測特性的差異,而不利於將此技術移轉至產業界。因此在開發製備感測元件時,除了開發高感應能力的材料外,薄膜的製備技術的控制亦非常重要。層接式(Layer-by-layer, LBL)自組裝成膜技術,是利用物種帶正、負電荷的性質,經由靜電力互相吸引而自組合,形成多層聚電解質的堆積結構而製成薄膜。此技術具有簡單、室溫、沒有成長膜厚的限制、不需要複雜的設備及穩定性高等優點。在材料技術的開發重點,除持續開發新穎的奈米複合材料的技術之外,與系統整合所需之製程技術,更需積極佈局。新製程開發及設計技術的整合,以因應電子產品人性化演變及智慧化需求,開拓新產品應用技術。因此本研究之全程計畫目標為利用於96年度以QCM建立層接式自組裝成膜製備化學感測器技術的相關條件因素的基礎之下,第一年開發以層接式自組裝成膜技術製備可撓性奈米碳管為主材的奈米複合感測材料應用於可撓式化學感測器之技術;第二年開發以層接式自組裝成膜技術製備可撓性導電性高分子為主材的奈米複合感測材料應用於可撓式化學感測器之技術;第三年為將第一年及第二年所開發出可撓式氣體感測器整合至同一可撓性塑膠基板,製成新的多功能之感測模組(sensor array),並且搭配辯識軟體,開發智慧型可撓式感測陣列模組系統。以期建立未來可結合RFID標籤製成主動性、智慧型標籤之先前所需技術之基礎。
In the past decade, the fast growing IC technology has taken us toward a new digital age, where digital products with wireless functions have gradually become part of our daily life. Therefore, the flexible electronics have attracted more and more attentions as one of the key technologies in the development roadmap. The Organic Electronics Conference 2007 and IDTechEx have reported correctly that developing trends of flexible sensors combined with wireless and RFID system in the future. The requirement of automatic measurement and response will enable to improve the quality of human life. In the past years, organic-inorganic nanocomposite materials have been regarded as a new class for many new electronic, optic or magnetic applications since many bulk properties can be improved. In the past years, we developed many SiO2-based, CNTs and TiO2 nanopowders of nanocomposite materials for the application of humidity and gas sensors. The synthesis of sensing materials (nanocomposite materials) and fabrication of sensing thin films affected the sensing characteristics of the sensor devices. Layer-by-layer (LBL) assembly is based on alternate electrostatic adsorption of charged components. The oppositely charged monomolecular layers are adsorbed on each other and locked via electrostatic binding. The thin films are adsorbed onto a substrate from an aqueous solution via a sequential dipping process. The multiplayer growth step can be 1-2 nm, and the multilayers of any composition can be designed. This technique is simple, low temperature fabrication, very inexpensive and environmental friendly. It is important to develop continuously the new sensing materials. Additionally, it is right trend to combine the new fabrication technique and designed idea to develop new electronic products based on the flexible devices in the future. In this study, the three years plan will be proposed to develop the fabrication technique of flexible chemical sensors and smart sensor array based on the results of 2007 year. First year, we will propose the fabrication of CNTs based nanocomposite thin films on flexible substrate by LBL assembly as flexible chemical sensors. Second year, we will propose the fabrication of conducting polymers based nanocomposite thin films on flexible substrate by LBL assembly as flexible chemical sensors. Third year, we will integrated the results of first and second year to develop the flexible smart sensing system.