摘要: | 本論文之目的是「網點2020」。這個名詞的意思是:嘗試在2020年創作出適合噴墨印刷網點品質控制的方程式。而創作方程式的方法則是以牛頓的科學技術為依歸。本論文的結論之一是,牛頓的科學技術包含以下九個項目:哲學、諦察、實驗、數學、參數、方程、解釋、應用、以及發表。另外,本論文發現今天印刷工業中所常用的網點品控方程式,雖然都有依照牛頓的科學邏輯來打造,但是在印刷實務的使用上,這些方程式皆具有瑕疵和限制。這些限制包括只適合用在「硬式」印刷的計算上(Murray-Davies equation, 1936),過度簡化之假設(Yule-Nielsen equation, 1951),以及複雜的電腦計算(Seymour equation, 2012)。
運用文獻中已發表的數據可以證明一般用來計算網點面積的參數,光學濃度,其實可以用光學反射率來取代。光學濃度方程式和光學反射率方程式所算出的網點面積值是相等的;這兩個方程式互為相當(Equivalence)。
本論文提出在網點的數學分析上,光學效應遠大於質量的擴散效應,並且提出以下五項新的研究設計:規劃一個新的參數—光影(Shadow)、導入Kubelka-Munk理論、探討網點結構、改進Yule-Nielsen理論、以及運用Beer–Lambert law (BL定律)。
The purpose of this thesis is to create Dot 2020. Which means creating a formula in the year of 2020 that can accurately help control the quality of inkjet’s printing dots. The method for creating this formula is based on Newtonian Science which can be divided into nine parts: Philosophy, Observation, Experiment, Mathematics, Parameter, Formula, Explanation, Application, and Publication. Through research, this thesis reports that the currently used formulas, although contrived using Newtonian Science, for analyzing printing dots all have limitations on practical usage. The limitations include suitable only for the hard dots (Murray-Davies equation, 1936), schemed with oversimplification (Yule-Nielsen equation, 1951), and difficult to apply due to complex computer analysis (Seymour equation, 2012).
This thesis also reveals that the commonly used parameter, the optical density, for dot-area calculations can be replaced with the optical reflectance for simpler calculations. The replacement can be done with plain algebra; and the exact equivalence of these two parameters on area calculations can be numerically proved using published data in the literature.
Finally, it is hypothesized that in the analysis of printing dots, optical effects are much more important than the physical effects such as the spreading of ink mass. And for studying the optical effects and for creating the Dot 2020, this thesis designs five new research fields: (a) studying a new parameter–the shadow, (b) introducing the Kubelka-Munk theory into the optical analysis, (c) analyzing the structure of a printing dot, (d) improving the Yule-Nielsen theory, and (e) applying the Beer-Lambert law. |