English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 46962/50828 (92%)
造訪人次 : 12411191      線上人數 : 1225
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    主頁登入上傳說明關於CCUR管理 到手機版


    請使用永久網址來引用或連結此文件: https://irlib.pccu.edu.tw/handle/987654321/48252


    題名: 個資去識別化技術之探析
    Analysis of Personal Data De-identification Techniques
    作者: 吳建成
    貢獻者: 資訊管理學系碩士在職專班
    關鍵詞: 個資保護
    去識別化技術
    資料有用性
    適法性
    重新識別攻擊
    personal data protection
    de-identification techniques
    data usefulness
    legality
    re-identification attack
    日期: 2020
    上傳時間: 2020-08-06
    摘要: 目前大數據及開放資料盛行,為了保護個人隱私,故而有去識別化技術之誕生,與此同時,我國亦推出相應之法規範及標準。基於資料有用性與隱私保護之權衡下,是以有去識別化之必要,而技術之擇用則對去識別化過程之成敗至關重要,至於成敗判定之標準,則端視法規範之要求。由於本論文乃以去識別化技術之探析為主軸,而資料有用性與適法性又是不可不考量者,因此,本論文先闡釋及探討常見之去識別化技術,其次,介紹兩種常用的正規隱私量測模型,使得去識別化後之效能得以量測。嗣後,則設計一情境來演示去識別化過程,再就結果進行技術性、資料有用性之分析,並依據我國法規範探討其適法性。希望藉由本論文指出之三構面——技術性、資料有用性與適法性,以及在此三構面下所建立的K-匿名模型之框架,在組織有去識別化之需求時,能於技術擇用、模型建立及效能評估方面給予參考與指引。
    At present, big data and open data are prevalent. In order to protect personal privacy, de-identification techniques have been born. At the same time, our country has also intro-duced corresponding legal norms and standards. Based on the trade-off between usefulness and privacy protection, de-identification is necessary, and the selection of de-identification techniques are crucial to the success or failure of the de-identification process. As for the success or failure of the de-identification process, the judgment criteria depends on the requirements of legal norms. Since this paper focuses on the analysis of de-identification techniques, and data usefulness and legality are indispensable, this paper first explains and discusses the common de-identification techniques. Secondly, two commonly used formal privacy measurement models are introduced, so that the effectiveness of de-identification can be measured. After that, a scenario was designed to demonstrate the process of de-identification, and then the results were analyzed in terms of technicality and data use-fulness, and the legality of the results was discussed based on our country's legal norms. It is hoped that through the three dimensions pointed out in this paper—technicality, data use-fulness and legality, as well as the framework of the K-anonymity formal privacy meas-urement model established under these three dimensions, when the organization has the need for de-identification, they can provide reference and guidance in technques selection, model building and performance evaluation. This may be the meager contribution of this research to the protection of personal privacy.
    顯示於類別:[資訊管理學系暨資訊管理研究所 ] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML221檢視/開啟


    在CCUR中所有的資料項目都受到原著作權保護.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋