English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 47249/51115 (92%)
造訪人次 : 14228706      線上人數 : 614
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    主頁登入上傳說明關於CCUR管理 到手機版


    請使用永久網址來引用或連結此文件: https://irlib.pccu.edu.tw/handle/987654321/45524


    題名: Complex defect inspection for transparent substrate by combining digital holography with machine learning
    作者: Chien, KCC (Chien, Kuang-Che Chang)
    Tu, HY (Tu, Han-Yen)
    貢獻者: 電機系
    關鍵詞: digital holography
    machine learning
    defect inspection
    日期: 2019-08
    上傳時間: 2019-12-24 09:47:09 (UTC+8)
    摘要: We proposed a complex defect inspection (CDI) technique for quality control of transparent substrates that uses the diffraction characteristics of digital holograms and a machine learning algorithm. A complex pattern diffraction model was built to provide two diffraction criteria, the least separation of confusion and the effective diffraction distance, to extend depth of focus in the effective diffraction regime for numerical reconstruction. On the basis of an analysis of three-dimensional diffraction characteristics of complex images, defect identification was performed to detect and classify defects (cracks, dusts, and watermarks) in transparent substrates using region-based segmentation and a machine learning algorithm. The experimental results indicated that the defect detection performance of the proposed CDI system was recall = 96.3% and precision = 92.8%. Moreover, overall multiclass classification accuracy = 95.3%, resulting in a discrimination area under the receiver operating characteristic curve (Az) of 0.96.
    關聯: JOURNAL OF OPTICS 卷冊: 21 期: 8 文獻號碼: 085701
    顯示於類別:[電機工程系] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML236檢視/開啟


    在CCUR中所有的資料項目都受到原著作權保護.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©  2006-2025  - 回饋