文化大學機構典藏 CCUR:Item 987654321/45321
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 46965/50831 (92%)
Visitors : 12751240      Online Users : 550
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: https://irlib.pccu.edu.tw/handle/987654321/45321


    Title: 環境空氣品質物聯網之氣體感測元件開發( I )
    Fabrication of Gas Sensors of the Environmental Air Quality of Iot( I )
    Authors: 蘇平貴
    Contributors: 化學系
    Keywords: 環境空氣品質物聯網
    二氧化硫氣體感測器
    揮發性有機物質氣體感測器
    懸浮微粒感測器
    金屬氧化物半導體式
    石英晶體微天平
    室溫型
    脈衝式
    主成份分析法
    快速傅利葉轉換法
    Date: 2019-2020
    Issue Date: 2019-11-14 10:45:47 (UTC+8)
    Abstract: 本計畫是將以近年來在科技部計畫經費補助下所開發的室溫型金屬氧化物半導體式氣體感測器的技術基礎之下,再進一步針對環境空氣品質物聯網 (Environmental air quality of Internet of Things, IoTs) 中的氣體感測器技術加以開發二氧化硫(SO2)、揮發性有機物質(VOCs)及懸浮微粒(PM2.5)等氣體感測器,應用於台灣空氣品質物聯網的感測器監測系統,建立國造化感測元件技術的基礎。三年期的計畫,第一年將採用多元醇法來合成奈米級異質結構的三氧化鎢複合材料製備成室溫型金屬氧化物半導體式(Metal oxide semiconductor, MOS)二氧化硫氣體感測器,並搭配使用不同的波長的發光二極體燈作為UV enhanced的光源,可達到節能省電的功效,使二氧化硫氣體感測模組符合環境空氣品質物聯網應用趨勢。第二年將採用多層結構MOS型感測元件核心技術解決因VOCs組成複雜的問題,再利用脈衝式訊號量測氣體濃度技術及訊號擷取辨識數據積分運算技術(主成份分析法、快速傅利葉轉換法),達到可定量及定性VOCs氣體。第三年將提出提高石英晶體微天平QCM (quartz crystal microbalance)式的PM2.5感測器技術的增進感度改善技術,結合微管柱的設計的分離前處理採樣機構,適當分離懸浮微粒,及透過對QCM量測元件的溫度上精密控制可降低雜訊,提昇系統解析度、穩定度及再現性,而增進感度,降低PM2.5感測的偵測極限。
    Based on Ministry of Science and Technology of Taiwan for support, we have developed the fabrication of the room-temperature type metal oxide semiconductors chemical gas sensors. In this study, the high sensitivity and good selectivity room-temperature chemical gas sensors were fabricated and used in Environmental Air Quality of Internet of Things (IoTs). First year, a room-temperature SO2 metal oxide semiconductor gas sensor that was made of heterojunctions structure of WO3-based nanocomposite materials was fabricated using polyol technique. The sensitivity of the SO2 gas sensor was enhanced by using LED and it exhibited ultra-high sensitivity and low power consumption for application in air quality IoTs. Second year, the volatile organic compounds (VOS) gas sensors were fabricated using multilayered structure SnO2-based nanomaterials. Moreover, the pulsed-temperature mode, principal component analysis (PCA) and fast Fourier transform (FFT) were used to improve the sensitivity and selectivity of the VOCs gas sensors that were made of multilayered SnO2. Third year, the sensitivity and detection limit of the quartz crystal microbalance-type (QCM) PM2.5 sensor were improved using micro-fluid system and heated-QCM system.
    Appears in Collections:[Department of Chemistry & Graduate Institute of Applied Chemistry ] project

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML181View/Open


    All items in CCUR are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback