文化大學機構典藏 CCUR:Item 987654321/45285
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 47145/51011 (92%)
Visitors : 13873611      Online Users : 214
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: https://irlib.pccu.edu.tw/handle/987654321/45285


    Title: 半群系統測度熵之交換性及乘冪法則關聯
    Commutativity and Power Rule of Metric Entropy for Semigroup Systems
    Authors: 鄭文巧
    Contributors: 應用數學系
    Keywords: 半群動力系統
    乘幕法則
    Date: 2018-2019
    Issue Date: 2019-11-08 09:40:12 (UTC+8)
    Abstract: 預估自由半群動力系統之局部熵潛能量將有上半連續(upper semicontinuity)的性質, 共同擁有交換性架構, 亦期望發現 Birkhoff Ergodic Theorem 相似成果. 當系統的自由度無限增大時, 遍歷的可能性也就越來越增大,乘幕法則將影響半群系統不確定性, 想理下合理預測 Shannon-McMillan-Breimann 定理在動力系統中, 共同擁有不變測度. 是否有相似成果, 將進一步審查 power rule, product rule, affinity, generator是否保持. 因為混沌半群系統的發展正處於實質性應用開發的研究階段, 符號動力學(symbolic dynamics)已是非線性混沌系統研究的核心部分. 在不變系統架構的假設之下, 預估把多函數半群動力系統乘幕法則的探討, 提起到符號動力學上研究它的遞移性(transitivity)、遞迴性(recurrence) 及周期性質.
    Predict this semigroup system keeps the property of upper semicontinuity. The community of the measure-thoeretic entropy will be correct. We also check similar Shannon-McMillan-Breimann under this system. Moreover, under the symbolic dynamics, we also can discuss the transitivity, recurrence and periodic properties in the semigroup case.
    Appears in Collections:[Department of Applied Mathematics] project

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML295View/Open


    All items in CCUR are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback