English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 47126/50992 (92%)
造訪人次 : 13847720      線上人數 : 261
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    主頁登入上傳說明關於CCUR管理 到手機版


    請使用永久網址來引用或連結此文件: https://irlib.pccu.edu.tw/handle/987654321/45234


    題名: 侷域表面電漿共振相位頻譜之研究:研發金屬奈米粒子特徵相位頻譜之編碼、分析技術及其在多重生物感測領域之應用
    Study of Phase Characteristics of Localized Surface Plasmon Resonance: Analytical Method Development of Phase Spectrum-Encoded Metal Nanoparticles and Its Application in Multiplexed Biosensing
    作者: 蘇莉真
    貢獻者: 光電物理學系
    關鍵詞: 相位頻譜
    干涉術
    生物感測器
    多重檢測
    日期: 2019-2021
    上傳時間: 2019-11-04 13:48:08 (UTC+8)
    摘要: 量測分析多種相互作用的生物分子,以同時獲得多個配體和受體之間結合模式的資訊,對於生物分析、臨床診斷和生物醫藥研究領域日漸重要。許多研究文獻表示,未來對於疾病診斷或治療反應監測,將會依賴量測一群生物標記分子,而不再只是偵測單一生物標記分子。因此我們需要一種優秀的生物標誌多重偵測分析平台,能針對同一樣本,同時量測多種生物標記分子。侷域表面電漿共振的相位研究已證實,相位的共振波長也會受到金屬奈米結構的形狀、材質和尺寸影響,且相位頻譜同樣會因為環境折射率變化而發生偏移,而過去的文獻都是利用量測此相位共振波長的位移量,作為相位感測式感測器,相較於傳統量測金屬奈米結構吸收光譜的方式,其靈敏度大幅提升了兩到三個數量級。但是,受限於相位量測技術僅能取得各種金屬奈米結構(或粒子)的總和相位頻譜,並不容易找出各成份相位頻譜的解析解,因此目前尚未有團隊應用此高靈敏度技術開發出生物分子多重偵測平台。本計畫為研究各種金屬奈米粒子的侷域表面電漿共振現象的相位特性,針對金屬奈米粒子的特徵進行系統性的探討,並以此為依據,建構新型相位感測式侷域表面電漿共振生物感測器,將金屬奈米粒子的特徵相位頻譜當作編碼奈米探針,不量測其共振波長的位移量,改從干涉顯微成像系統取得二維影像相位頻譜中,計數有幾顆微米磁珠的周圍出現A金屬奈米粒子特徵相位頻譜、幾顆出現B金屬奈米粒子特徵相位頻譜…,以計數的顆數回推各種待測物在樣本中的含量,此構想打造了一個精準、可靠、高靈敏度的新型態偵測平台供生物多重測定之研究。
    It is increasingly important in biological analysis, clinical diagnostic, and biomedical science to study many different ligand receptor interactions to get the binding information. Previous researches indicate that diagnosis of disease and monitoring of treatment response will rely on measuring a group of biomarkers rather than just detecting a single biomolecule. Therefore, we need an excellent multiplexed biosensing platform that can measure multiple analytes simultaneously in a single sample. The studies focused on phase responses of localized surface plasmon resonance (LSPR) have confirmed that the resonance wavelength in the phase spectrum is affected by the shape, material and size of the metal nanostructure, and is also shifted due to changes in refractive index of the surroundings. Thus, it can be used as a phase-sensitive sensor by measuring the resonance wavelength shift in the phase spectrum. In addition, the refractive index sensitivity of this kind of sensor is greatly improved by two to three orders of magnitude compared to the conventional LSPR absorption spectroscopy. However, we can only obtain the total phase arising from different nanostructure (or particles) when interacting with a mixed nanostructure (or particles). Difficulty in differentiating the phase spectrum of each nanostructure component makes the phase-sensitive LSPR sensing platform not yet capable of multiplexed detection.This proposal aims to study systematically the phase characteristics of LSPR for various metal nanoparticles, and then based on the results to develop a novel phase-sensitive LSPR biosensor. The nanoparticles are coded by using the resonance characteristics of the phase spectrum, and subsequently are distinguished and counted from the two-dimensional image obtained from an interference microscopy system. This innovative approach offers an accurate, reliable, and highly sensitive detection platform for the study of multiplex biological assays.
    顯示於類別:[光電物理系] 研究計畫

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML321檢視/開啟
    index.html0KbHTML470檢視/開啟


    在CCUR中所有的資料項目都受到原著作權保護.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©  2006-2025  - 回饋