English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 46962/50828 (92%)
造訪人次 : 12434603      線上人數 : 788
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    主頁登入上傳說明關於CCUR管理 到手機版


    請使用永久網址來引用或連結此文件: https://irlib.pccu.edu.tw/handle/987654321/45084


    題名: 整合技術分析指標建構類神經網路-台灣股市投資決策與分析
    Integration of Artificial Neural Network and Technical Analysis for Stock Price Prediction in Taiwan
    作者: 歐曜綸
    貢獻者: 財務金融學系
    關鍵詞: 人工智慧
    類神經網路
    摩台指
    技術分析
    預測
    日期: 2019
    上傳時間: 2019-10-23 14:43:40 (UTC+8)
    摘要: 由於人工智慧的高度發展,因此實務界逐漸採取相關人工智慧處理複雜的巨量數據(big data)。本研究運用了也在人工智慧範疇類的類神經網路,並結合了技術分析指標數據做為類神經網路的預測變數,而類神經網路擁有優秀的容錯能力,即使有雜訊資料也能產生較為精確的預測結果,已有許多研究及文獻採用類神經網路為研究工具,進而提升預測能力。本文首先比較不同隱含層與不同神經元數組合之預測績效,接著比較加入GARCH波動度作為類神經網路預測變數後的績效,並採用摩根台灣指數作為預測標的,使用其2014年至2018年之歷史股價資料探討預測績效。最後結果顯示,類神經網路設定為2×2在預測5天期時,已具有良好的預測績效。本研究可供使用類神經網路預測價格、波動等等研究為參考依據,特別是以技術分析指標作為變數進行價格預測之研究。
    Following the development of artificial intelligence, practitioners are gradually using artificial intelligence to handle complex huge amounts of data (big data). This study uses a neural network that is also a kind of artificial intelligence technology and combines with technical analysis data as the predictive variables of artificial neural network. First, we compare the predicted performance of different hidden layer and different neuron number combinations, and then compare the performance of GARCH volatility as the predictive variable of artificial neural network. We use the historical share price data of MSCI Taiwan Index for the period of 2014-2018 and view the predicted performance through historical share price data. The artificial neural network with excellent fault tolerance, even if there is noise data also can produce more accurate prediction results. Many previous studies and literature used artificial neural networks as a research tool to improve predictive performance. This study can be used as a reference basis for the prediction of the price, volatility, etc. by using artificial neural networks. In particularly, the technical analysis of data as a variable for price forecasting research.
    顯示於類別:[財務金融學系 ] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML177檢視/開啟


    在CCUR中所有的資料項目都受到原著作權保護.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋