English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 47249/51115 (92%)
造訪人次 : 14229505      線上人數 : 678
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    主頁登入上傳說明關於CCUR管理 到手機版


    請使用永久網址來引用或連結此文件: https://irlib.pccu.edu.tw/handle/987654321/45081


    題名: 應用類神經網路和決策樹分類技術於繼續經營疑慮預測
    Applying Artificial Neural Network and Decision Tree to Going Concern Doubt Prediction
    作者: 羅彥翔
    貢獻者: 會計學系
    關鍵詞: 類神經網路
    決策樹
    繼續經營疑慮
    混合模式
    日期: 2019
    上傳時間: 2019-10-23 14:31:57 (UTC+8)
    摘要: 近年來國內各個產業無論是在經營模式、成本調整甚至服務模式等面向無不面臨著產業轉型的重大挑戰。所屬的企業在此一分際上稍有不慎或決策失準便會遭逢重大損失,致使企業體質造成重大衝擊,如此一來無論經營者本身或廣大的投資人都會蒙受重大的損失。繼續經營疑慮相關的研究雖多,有鑑於此本研究將以我國電子產業以及傳統產業為研究樣本,建立一套繼續經營疑慮的預測模式,希望能對投資人及相關從業人員在查核或做投資決策時有所助益。
    本研究所提之研究模式分為兩階段,首先利用類神經網路由變數群中篩選出重要變數。再將變數分別投入決策樹中的C5.0及CHAID中建立分類預測模式。
    透過本研究之5組交叉驗證程序發現在傳統產業方面以ANN+C5.0所建立之繼續經營疑慮預測模型表現最佳,平均預測命中率達95.08%,型II錯誤率為平均為17.259%;電子產業方面以ANN+CHAID模式有最佳的預測平均命中率90.70%,平均型II錯誤率為25.119%。另在本研究所找出的關鍵指標中Tobin’s Q、ROE、股價淨值比與自由現金流量重複出現在兩個產業的預測模式中,建議為來從業人員可以參考這些指標,規劃查核作業並進行相關評估。
    In recent years, all domestic industries have faced major challenges in industrial transformation, such as business model, cost adjustment and even service model. If the company is slightly inadvertent or inaccurate in decision-making, it will suffer a major loss, which will cause a major impact on the company's physique. As a result, the operator itself or the vast number of investors will suffer significant losses. Although there are many studies related to continuing business doubts, in view of this research, we will use China's electronics industry and traditional industries as research samples to establish a forecasting model for continuing business doubts, hoping to check or invest in investors and related practitioners. It is helpful to make decisions.
    The research model proposed by this research is divided into two stages. Firstly, the important variables are selected by using the neural network-based routing variable group. Then, the variables are respectively put into C5.0 and CHAID in the decision tree to establish a classification prediction mode.
    Through the five cross-validation procedures of this study, it is found that the traditional business forecasting model based on ANN+C5.0 has the best performance, the average predicted hit rate is 95.08%, and the type II error rate is 17.259%. In the electronics industry, the ANN+CHAID model has the best predicted average hit rate of 90.70%, and the average type II error rate is 25.119%. In addition, Tobin's Q, ROE, stock price ratio and free cash flow are repeated in the forecasting models of the two industries in the key indicators identified in this study. It is recommended that practitioners can refer to these indicators, plan check operations and conduct related Evaluation.
    顯示於類別:[會計學系暨研究所 ] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML362檢視/開啟


    在CCUR中所有的資料項目都受到原著作權保護.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©  2006-2025  - 回饋