文化大學機構典藏 CCUR:Item 987654321/44886
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 46965/50831 (92%)
造访人次 : 12751219      在线人数 : 540
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻
    主页登入上传说明关于CCUR管理 到手机版


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: https://irlib.pccu.edu.tw/handle/987654321/44886


    题名: 攜程旅遊網陸客遊記之文本分析
    Content Analysis of Mainland Tourist's Blogs on Ctrip Website
    作者: 張碧分
    贡献者: 地學研究所地理組
    关键词: 旅遊部落格
    陸客自由行
    文本分析
    文字探勘
    Travel blog
    the freedom tourist of mainland
    content analysis
    text mining
    日期: 2019
    上传时间: 2019-08-13 13:39:05 (UTC+8)
    摘要: 台灣自從2008 年開放陸客觀光之後兩岸之間的交流更加頻繁,來台旅遊人數更是呈現倍數的成長,而旅客通常都會藉由文字、照片紀錄下他們所前往的地點及對該地點的評論,來台自由行陸 客的旅遊足跡、旅遊動向和前往的景點 是目前對大陸遊客的研究缺乏的部分,本研究希望以自由行陸客為樣本去分析出他們 前往的景點,並了解自由行陸客在台灣的旅遊足跡以及景點的意象。
    本研究抓取 2015年 1 至 12 月攜程旅遊網來台自由行陸客的遊記共 516 篇遊記 將遊記按發表月份分類再將旅客來台天數、旅伴、人均花費、景點評論抓取出來,利用統計分析法和 SAS 的 text mining 分析工具進行遊記的文字探勘, 透過文字篩選找出個別詞語的關聯性及利用 文字歸類器將篩選後的詞語分類成不同主題,其中選擇篩選後前 10 名和後 10 名的專有名詞如 「臺北」,「臺北」和「方便」的關係性較高代表自由行陸客多對「臺北」有「方便」的意象,也有前 10 名的形容詞如好、多、不錯等…,屬於正面的意象,而這些旅遊意象也會作為之後來台的自由行陸客的參考,在文字歸類部分當同一詞語被分類在不同主題下有可能代表這幾個主題分類是雷同的,且該一詞語是具有代表性的,經過文字探勘後能更清楚知道自由行陸客他們的 前往的景點分佈,希望藉由本研究能讓政府和商家對於自由行陸客有更多的了解 。
    Since Taiwan opened its objective light in 2008, the exchanges between the two sides have become more frequent, the number of visitors to Taiwan has been growing at multiple times, and visitors often use text and photographs to record their location and comments on the location. The selection of attractions for free travel to Taiwan is a lack of research on mainland tourists,the study hope to analyze their attractions selection and the image of the Taiwan. This study crawl January to December 2015 Ctrip travel to Taiwan to the freedom tourist of mainland travels total of 511, the characteristics of the travels are divided into the number of days, travel companions, per capita expenses, scenic spots, and statistical analysis. Using the statistical analysis method and SAS's text mining analysis tool to carry out travel study of the text, through the text screening to find out the relevance of individual words and the use of text classifier will filter the words classified into different themes, which select the top 10 after screening proper nouns, such as " Ximending " , and also in the top 10 with adjectives such as good , and more, and so on ... well, the front part of the image, and the freedom tourist of mainland travels of these images will be used as the reference desk later in the classified section of text when the same words are classified under different themes likely to represent these subject classification is identical,and the word is a representative, after the text mining can be more clearly aware of their access to the free exercise of mainland tourists attractions selection, hope that through this government and business studies allow for the freedom tourist of mainland to know more about.
    显示于类别:[地理學系] 博碩士論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML217检视/开启


    在CCUR中所有的数据项都受到原著作权保护.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈