English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 47121/50987 (92%)
造訪人次 : 13812604      線上人數 : 259
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    主頁登入上傳說明關於CCUR管理 到手機版


    請使用永久網址來引用或連結此文件: https://irlib.pccu.edu.tw/handle/987654321/44635


    題名: Dental cement's biological and mechanical properties improved by ZnO nanospheres
    作者: Nguyen, TMT (Thi Minh Thu Nguyen)
    Wang, PW (Wang, Pei-Wen)
    Hsu, HM (Hsu, Hsiu-Ming)
    Cheng, FY (Cheng, Fong-Yu)
    Shieh, DB (Shieh, Dar-Bin)
    Wong, TY (Wong, Tung-Yiu)
    Chang, HJ (Chang, Hsin-Ju)
    貢獻者: 化學系
    關鍵詞: ZINC-OXIDE NANOPARTICLES
    ANTIBACTERIAL ACTIVITY
    LUTING CEMENT
    SOLUBILITY
    TOXICITY
    SUSPENSIONS
    STRENGTH
    CONCRETE
    BEHAVIOR
    日期: 2019-04
    上傳時間: 2019-06-25 11:53:49 (UTC+8)
    摘要: Metal oxide nanoparticles are a new class of important materials used in a wide variety of biomedical applications. Bulk zinc oxide (ZnO) particles have been used for temporal or permanent luting cement because of their excellent mechanical strength and biocompatibility. ZnO nanoparticles have distinct optical and antibacterial properties and a high surface-to-volume ratio. We investigated the mechanical and antibacterial properties of luting cement with different ratios of ZnO nanospheres. We showed that luting cement with 5% and 10% ZnO nanospheres was less soluble in low-pH (pH 3) artificial saliva. Antibacterial activity was 40% higher for Streptococcus mutans and 90% higher for Porphyromonas gingivalis when > 10% (w/v) of the bulk particles were replaced with ZnO nanospheres in ZnO polycarboxylate cement. ZnO nanospheres were also biocompatible with mammalian cells. Additionally, the compressive strength was 1.2 times greater and the diametral tensile strength was 1.5 times greater for cements with 10% ZnO nanospheres than for conventional ZnO polycarboxylate cement. We propose a new method for improving dental luting cement by integrating it with ZnO nanospheres. This method simultaneously adds their greater antibacterial, mechanical, and acid resistance properties and retains an outstanding degree of biocompatibility.
    關聯: Materials Science and Engineering: C
    Volume 97, April 2019, Pages 116-123
    顯示於類別:[化學系所] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML156檢視/開啟


    在CCUR中所有的資料項目都受到原著作權保護.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋