English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 46962/50828 (92%)
造訪人次 : 12454925      線上人數 : 801
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    主頁登入上傳說明關於CCUR管理 到手機版


    請使用永久網址來引用或連結此文件: https://irlib.pccu.edu.tw/handle/987654321/44405


    題名: 應用資料探勘技術於子宮頸癌預測之研究
    Application of Data Mining Techniques for Detection of Cervical Cancer
    作者: 林譿伶 (LIN,HUI-LING)
    貢獻者: 資訊管理學系
    關鍵詞: 子宮頸癌
    資料探勘
    決策樹
    類神經網路
    最近鄰居演算法
    關聯規則
    cervical cancer
    data mining
    decision tree
    neural networks
    k-nearest-neighbor regression
    association rules
    日期: 2018
    上傳時間: 2019-05-31 13:54:27 (UTC+8)
    摘要: 衛生福利部日前公布民國 105年國人十大死因,第一名為惡性腫瘤(癌症),其次是心臟疾病,第三名則為肺炎。此外,子宮頸癌是全球婦女第四大癌症死因,僅次於乳癌、大腸癌和肺癌(衛生福利部統計處,2017)。隨著醫療體系的發展,民眾對自己的健康也愈加地重視,希 望藉由資訊技術的支援來建立醫學知識,進而找出各種疾病的醫療指引。在過去醫學診斷多只靠醫師以往的經驗,但是現今疾病因素多元化,本研究配合現在的資訊技術,預測是否罹患子宮頸癌,以及找出子宮頸癌檢驗項目之關聯性。本文以 UCI 網站所收集的資料進行訓練與測試,運用類神經網路、決策樹、最近鄰居演算法三種資料探勘技術,建立子宮頸癌預測模型。此外,本研究也加入了關聯規則,去探討子宮頸癌檢測中,四種檢驗項目之間的關聯性,輔助醫師找出真正有效的檢查項目,並減少不必要的醫療資源浪費。
    In 2016, the Ministry of Health and Welfare addressed the top ten causes of death in Taiwan. Cancer was the leading cause of death, followed by heart disease and the pneumonia. Moreover, cervical cancer is the fourth most common cancer in women, behind breast cancer, colorectal cancer and lung cancer (The Ministry of Health and Welfare, 2017).
    With the development of the health care system, people are paying more and more attention to their own health. They hope to establish medical knowledge through the support of information technology, and then find out the medical advice for various diseases. In the past, medical diagnosis mostly depended on the previous experience of doctors, but today's disease factors are diversified. In this paper, we attempted to predict the cervical cancer in female patients and discover the relevance between different cervical cancer screening tests.
    We used the data from the UCI database and built three cervical cancer forecast models based on data mining techniques: neural network, decision tree and k-nearest-neighbor regression. Furthermore, we used the association rule mining to identify the relationships between four different cervical cancer screening tests. The results can be used as the medical assistance to identify the effective features in cervical cancer detection and reduce unnecessary utilization of medical resources.
    顯示於類別:[資訊管理學系暨資訊管理研究所 ] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML206檢視/開啟


    在CCUR中所有的資料項目都受到原著作權保護.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋