當材料在奈米尺度時,會有不同於以往的尺寸效應,不論在光性、電性、磁性方面都有別以往的效果產生。鋅是一個重要元素,具有低熔點及沸點的特性。本實驗利用微波電漿輔助化學氣相沉積法成功合成出氧化鋅奈米柱、硫化鋅奈米線、硒化鋅奈米棒,從場發射掃描式電子顯微鏡(FE-SEM)中觀察其表面形貌,再利用高解析穿透式電子顯微鏡(HRTEM)和電子選區繞射(SAD)來確認單晶結構,且定義ZnO成長方向[001]; ZnS成長方向[002]; ZnSe成長方向[111],另外從X光繞射分析儀(XRD) X光電子能譜儀(XPS) 微拉曼光譜(Raman)對結構成份和化學態做進一步分析。
除此之外,利用光激發光譜(PL)來分析三種鋅化合物的發光波段,ZnO紫外光發光位置為384nm,ZnS紫外光發光波段為338nm,ZnSe藍光發光波段為465nm。
When in nano-scale, materials bear different characteristics, suck as optical, electrical, and magnetic properties. Zinc is an important element with low melting point and boiling point characteristic. In this work, zinc oxide nanocolumn、zinc sulfide nanowires、zinc selenide nanobars have been successfully synthesized by MPECVD(microwave plasma enhanced chemical vapor deposition). Use field emission scanning electron microscope(FESEM) to observe the surface morphology and use high resolution transmission electron microscopy(HRTEM) micrographs and selected area diffraction (SAD) to show the crystalline patterns of zinc compound nanostructures. ZnO growth direction is of [001], ZnS [002] and ZnSe [111].The structure and composition were characterized by means of X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS) and micro-Raman spectroscopy.
The emission bands of the three zinc compounds were analyzed by photoluminescence (PL). ZnO UV emission is at 384nm, ZnS UV emission is at 338nm, and ZnSe blue emission is at 465nm.