生物力學是利用力學的原理和方法研究生物系統運動的一門科學。根據Zemicke( 1996) 的報告,生物力學研究技術近些年來在運動神經控制 (neuromotor control) 研究方 面的加速滲透,為深入理解運動控制的機轉起了催化劑的作用。人體運動通常是多肢體的複 合運動 (multi-segment movement), 從生物力學角度講,肢體運動又是由關節力矩控制和 決定的。根據 Bernstein(1987) 和 Hoy & Zemicke(1996) 的研究,人體運動不僅受到主動 的肌肉力矩的影響,亦受到重力矩及由運動產生的被動力矩的影響。通過肢體運動的動力學 可以對這些控制人體運動的力矩分量進行量化分析,據此,探討人體運動如何受到主動力和 被動力的影響,特別是運動過程中出現的肢段問的相互作用現象,根據這一方法獲得的結果 亦可推估運動的神經控制機轉 (Smith & Zemicke, 1987; Zemicke, 1996)。 因此,這一方 法又被稱為 " 肢段間互動的動力學 (intersegmental dynamics)"。根據上述學者的觀點, 肢段間互動的動力學不僅對產生與控制運動的理解有重要的意義,而且它亦為生物力學提供 了一種研究人體運動、重要的和嶄新的方法,(Schneider,1990)。肢段間互動的動力學分析 結果顯示,肌肉收縮可以直接作用產生肢體運動。肢體運動又隨之引起被動的反作用力矩反 過來影響運動,所以主動的肌肉力矩還需對抗平衡這些由於肢體相對運動而產生的被動力矩 。在動作控制與發展過程中,神經肌肉系統就是通過肌肉收縮力矩的調節與控制,達到對外 力矩 (外在環境 ) 和被動的反作用力矩 (motion-dependent) 的平衡與適應, 進而完成或 發展出一個有效率和協調的 (coordinated) 肢體動作。
Biomechanics is the application of the principles and methods of mechanics to study the movement of biological systems. According to Zemicke (1996), the accelerated infusion ofbiomechniacs techniques into the study ofneuromotor control has served, during the past few decades, as a catalyst for generating new insights into the control of movement. From the biomechanical point of view, human limb movements are determined and controlled by joint torque. According to Bernstein (1987) and Hoy & Zemicke (1986), limb movements are influenced not only by active muscle torque, but also by gravitational torque and passive interaction torque created by segment movement. The modified formulation of limb dynamics, i.e. "intersegmental dynamics", allows us to quantify these torque, and has led to insights and predictions about motor control and coordination of human movement. Intersegmental dynamics analyses reveal that muscle contraction can function directly to cause and control limb movement or to counteract interactive torques arising from mechanical interactions between limb segments. Under the regulation of nervous system, muscle's function is actually to employ and/or to counteract (counterbalance) the varies of passive torques in order to achieve efficient and coordinated limb motions. During development and learning, intersegmental dynamics of limb may change as the nervous system exploits them to achieve efficient and coordinative limb motions.