文化大學機構典藏 CCUR:Item 987654321/39381
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 47121/50987 (92%)
造访人次 : 13831712      在线人数 : 222
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻
    主页登入上传说明关于CCUR管理 到手机版


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: https://irlib.pccu.edu.tw/handle/987654321/39381


    题名: Endoplasmic Reticulum Stress-Triggered Autophagy and Lysosomal Dysfunction Contribute to the Cytotoxicity of Amine-Modified Silver Nanoparticles in NIH 3T3 Cells
    作者: Lee, YH (Lee, Yu-Hsuan)
    Fang, CY (Fang, Chun-Yong)
    Chiu, HW (Chiu, Hui-Wen)
    Cheng, FY (Cheng, Fong-Yu)
    Tsai, JC (Tsai, Jui-Chen)
    Chen, CW (Chen, Chun-Wan)
    Wang, YJ (Wang, Ying-Jan)
    贡献者: 化學系
    关键词: Silver Nanoparticles
    Physico-Chemical Properties
    Cellular Uptake
    Endoplasmic Reticulum Stress
    Autophagy
    Lysosome Impairment
    日期: 2017-07
    上传时间: 2018-02-21 15:49:17 (UTC+8)
    摘要: The mechanisms underlying nanoparticle-induced toxicity have become one of the most studied topics in toxicology during the last few years. Because of their excellent antimicrobial activity, silver nanoparticles (AgNPs) are recognized as promising nanomaterials with broad applicability. However, knowledge of the impact of AgNPs on biological systems, particularly regarding their possible effects and fate in living cells remains limited. Amines are among most popular AgNPs modifying agents. In this study, we found that amine-modified AgNPs could be taken up by cells through endocytosis. The internalized AgNPs eventually accumulated in lysosomes or autophagosomes. Smaller AgNPs (SAS, similar to 20 nm) were more toxic than larger AgNPs (LAS, similar to 80 nm). Our results suggest that SAS caused more lysosomal swelling, arrested autophagy and cell death. The mechanisms underlying the AgNP-induced autophagy in NIH 3T3 cells could be mediated by the activation of oxidative stress and endoplasmic reticulum (ER) stress signaling pathways. AgNPs treatment could trigger the expression of ER stress and autophagy markers (IRE1 and LC3-II). However, the autophagy substrate, p62, was accumulated in AgNP-treated cells, indicating that the autophagy process was inhibited. Our results clarify the mechanism by which AgNPs induce autophagosome accumulation and reveal the effects of AgNPs on lysosomes. This study illustrates the influence of AgNPs on biological systems and may provide insights to guide the development of protective measures for biomedical applications of AgNPs.
    關聯: JOURNAL OF BIOMEDICAL NANOTECHNOLOGY 卷: 13 期: 7 頁碼: 778-794
    显示于类别:[化學系所] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML198检视/开启


    在CCUR中所有的数据项都受到原著作权保护.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈