English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 47121/50987 (92%)
造訪人次 : 13812721      線上人數 : 261
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    主頁登入上傳說明關於CCUR管理 到手機版


    請使用永久網址來引用或連結此文件: https://irlib.pccu.edu.tw/handle/987654321/39342


    題名: Incorporated risk metrics and hybrid AI techniques for risk management
    作者: Lin, SJ (Lin, Sin-Jin)
    Hsu, MF (Hsu, Ming-Fu)
    貢獻者: 會計系
    關鍵詞: Decision making
    Knowledge visualization
    Feature selection
    Risk management
    Estimation of risk
    日期: 2017-11
    上傳時間: 2018-01-25 14:01:01 (UTC+8)
    摘要: This study proposes a novel technique by extending balanced scorecards with risk management considerations (i.e., risk metrics and insolvency risk) for corporate operating performance assessment and then establishes a fusion mechanism that incorporates hybrid filter-wrapper subset selection (HFW), random vector functional-link network (RVFLN), and ant colony optimization (ACO) for operating performance forecasting. The study executes HFW, which preserves the advantages of wrapper approaches, but prevents paying its tremendous computational cost, in order to determine the essential features for forecasting model construction. With the merits of rapid learning speed and no extra inherent parameters needed to be tuned, RVFLN helps establish the forecasting model. However, RVFLN has demonstrated that its superior forecasting performance comes with the challenge of being unable to represent the inherent decision logic for humans to comprehend. To cope with this task, the study conducts ACO so as to extract the inherent knowledge from RVFLN and represents it in human-readable format. If the extracted knowledge is not comprehensive for decision makers, then they will not be able to interpret and verify it. In this circumstance, the decision makers probably will not trust enough the extracted knowledge and be prone to making unreliable judgments more easily. The introduced mechanism herein is examined by real cases and poses superior forecasting quality under numerous examinations. It is a promising alternative for corporate operating performance forecasting.
    關聯: NEURAL COMPUTING & APPLICATIONS 卷: 28 期: 11 頁碼: 3477-3489
    顯示於類別:[會計學系暨研究所 ] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML389檢視/開啟


    在CCUR中所有的資料項目都受到原著作權保護.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋