English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 46867/50733 (92%)
造訪人次 : 11878704      線上人數 : 707
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    主頁登入上傳說明關於CCUR管理 到手機版


    請使用永久網址來引用或連結此文件: https://irlib.pccu.edu.tw/handle/987654321/39266


    題名: Integrated artificial intelligence-based resizing strategy and multiple criteria decision making technique to form a management decision in an imbalanced environment
    作者: Lin, SJ (Lin, Sin-Jin)
    貢獻者: 會計系
    關鍵詞: Decision making
    Imbalance data
    Multiple criteria decision making
    Support vector machine
    日期: 2017-12
    上傳時間: 2018-01-11 11:06:49 (UTC+8)
    摘要: Classification in an imbalanced dataset is a current challenge in machine learning communities, as the class-imbalanced problem deteriorates the performance of numerous classifiers. This study introduces a two-stage intelligent data preprocessing approach to tackle the class-imbalanced problem. By modifying the penalty parameter of the support vector machine (SVM), the discriminating boundary will move toward the majority class and in turn misclassify the majority class examples as minority class examples. That is, more misclassifications for the majority class examples are equivalent to a greater number of minority class examples. Executing the SVM as a preprocessor can be used to overcome the class imbalanced problem. Sequentially, the modified dataset undergoes the random forest to defy the curse of dimensionality. Finally, the preprocessed data are fed into a rule-based classifier to generate comprehensive decision rules. According to the empirical results, the presented architecture is a promising alternative for the class-imbalanced problem.
    關聯: INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS 卷: 8 期: 6 頁碼: 1981-1992
    顯示於類別:[會計學系暨研究所 ] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML202檢視/開啟


    在CCUR中所有的資料項目都受到原著作權保護.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋