English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 46962/50828 (92%)
造訪人次 : 12434443      線上人數 : 752
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    主頁登入上傳說明關於CCUR管理 到手機版


    請使用永久網址來引用或連結此文件: https://irlib.pccu.edu.tw/handle/987654321/37410


    題名: 結合物聯網與適地性服務提升行車安全性之研究
    The Study of Driving Safety Enhancement based on IoT and LBS
    作者: 周家楨
    貢獻者: 資訊傳播學系
    關鍵詞: 車載系統
    物聯網
    適地性服務
    交通事故
    開放資料
    Telematics
    IoT
    LBS
    Car Accident
    Open data
    日期: 2017
    上傳時間: 2017-08-16 09:33:14 (UTC+8)
    摘要: 在這科技快速發展的社會中,根據交通部統計查詢網統計,105年每一百個國人平均擁有33.2小客車,小客車在國人的交通生活中佔了很高的比例,而造成的交通意外事故的機會相對往上攀升,民國105年1月至7月更是提升到168,339件道路交通事故,更造成221,156人的死傷。在個人交通工具越來越多的情形下,交通安全的威脅機會上升,近年來台灣國人家庭多數擁有自家所使用的自小客車,與近年來一直被專注的議題—酒駕以及疲勞駕駛、未注意前車狀態與未保持安全距離所造成的傷亡及危害,本研究將運用現有科技與設備,避免駕駛酒後駕車的機會,提升駕駛在行車的安全性。
    本研究將結合物聯網與適地性服務,使用Arduino與行動裝置進行實作,當駕駛在酒後駕車時,因為呼出的酒精濃度高於標準並給予提醒,並提供一鍵警報的方式通知設定的聯絡人前來協助成為代理駕駛,針對國人多數肇事原因—未注意前車狀態及未保持安全距離、行駛疏忽、酒駕等,利用感測器為駕駛做出適當之判斷與通知,結合政府公開資料與適地性服務在易肇事路段提醒駕駛當心路況。在系統完成後,本研究以實驗法並針對受試者以階梯法進行深度訪談,瞭解駕駛者對於本系統的感受。訪談結果顯示,大多數受試者對於本系統採取正向態度;對於即時數據偵測不會有壓力等負面情緒,反而覺得是一種保障;並表示對於此類安全設施成為車輛基本配備樂觀其成;多數受試者表示願意安裝並持續使用,並且有受訪者對未來功能的提升方向給予建議,希望可以確保自身與各用路人之行車安全皆能提升並且被保障。
    Due to the rapid growth of motor vehicles, the traffic volume of roads increases greatly, and various traffic problems occurred.
    This research aims to enhance driving safety by understanding and alert drivers’ physical and mental conditions. In Taiwan’s family, we have our own car or motorcycle as a means of transport no matter for work or travel, and it causes many accidents happen every day. According to Government report and related research, traffic incidents are usually caused by three reasons: drunk driving, negligent driving, and fatigued driving. Therefore, this research designs and implements a system, which is composed of Arduino related Internet of Things technologies and a mobile application. When a driver is drunk driving, the system receives alert at alcohol concentration excessive. For the negligent situation, keeping a proper distance between cars is alerted. In order to be alert of the driver fatigue in advance, the system tracks the driving heartbeat and pulse. We also alert drivers when they pass the high-frequent traffic incident area. Based on open data and LBS, drivers can pay more attention when driving.
    Finally, in order to understand the feedback from drivers, in-depth interview with laddering methodology is used during the pilot test. Positive feedbacks are given by most interviewees. Therefore, it is believed that IoT sensors are accepted by drivers in detect the value of their own physiological data. Though some sensor and the wire will make them feel uncomfortable and stressful, driver have more expectations in future technologies for making it better. Not only determine the sensor will be user-friendly, but also recommend more function to protect themselves and all drivers for the driving safety.
    顯示於類別:[資訊傳播學系暨資訊傳播研究所] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML562檢視/開啟


    在CCUR中所有的資料項目都受到原著作權保護.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋