文化大學機構典藏 CCUR:Item 987654321/36363
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 46965/50831 (92%)
Visitors : 12751627      Online Users : 405
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: https://irlib.pccu.edu.tw/handle/987654321/36363


    Title: 以向量回歸模型預測纖維拉伸製程性能
    Prediction of the Fiber stretching process Based on Support Vector Regression-Autoregressive exogenous
    Authors: 郭凡
    丁永生
    郝礦榮
    Contributors: 紡工系
    Keywords: SVR模型
    ARX模型
    纖維牽伸過程
    預測
    SVR Model
    ARX Model
    Fiber Stretching Process
    Prediction
    Date: 2016-03
    Issue Date: 2017-06-27 12:48:43 (UTC+8)
    Abstract: 牽伸過程是纖維生產中的關鍵環節,其拉伸效果通過牽伸率來衡量,牽伸率主要由各牽伸環節內各個捲繞輥的相對轉速決定。牽伸率直接影響到最終製成的纖維原絲及成品的性能。針對牽伸率在纖維生產過程中的重要性,提出了基於SVR-ARX模型的纖維牽伸率預測方法,得出了纖維牽伸率的預測結果。實驗結果表明,SVM-ARX建立的回歸預測模型比SVR建立的回歸預測模型預測精度高。
    The fiber stretching process plays a key role in the process of fiber production and its effects is measured by the stretching ratio. The stretching ratio is determined by the relative speed of the winding roller. The stretching ratio is impact on the performance of the final fiber filament and production directly. Focused on the importance of the stretching ratio, the SVR-ARX predictive model for the fiber stretching rate based on existing industry data is proposed. Simulations results demonstrate that the proposed SVR-ARX method can increase the predict results than the traditional SVR method.
    Relation: 華岡紡織期刊 ; 23卷2期 (2016 / 03 / 01) , P106 - 110
    Appears in Collections:[Department of Textile Engineering ] Journal of the Hwa Gang Textile

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML58View/Open


    All items in CCUR are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback