奈米纖維膜以直立式高溫爐進行兩段連續式氧化與碳化、活化工程製作成奈米活性碳纖維膜,以增加其在大量本研究以碳纖級聚丙烯腈纖維為原料,經由電紡工程製備成不織布型態之奈米纖維膜,再將聚丙烯腈系生產時之實用性。在奈米活性碳纖維膜製備過程中,改變碳化溫度800℃、900℃與1000℃及水蒸氣活化源80cc/min 與120cc/min,以獲得不同的結晶特性、導電性質與表面結構,並評估其應用於高功率之超級電容器電極的可能性。實驗結果顯示,於製備奈米活性碳纖維膜之過程中,可藉由提高碳化溫度以及活化源改善其結晶緻密度、導電性質及表面孔洞結構。實驗結果得知,隨著碳化溫度與活化源的上升,其體積電阻呈現下降趨勢,在900°C 到1000°C 時電阻值下降趨勢最為明顯;而在碳化溫度1000°C 以及活化源120cc/min 的條件下,奈米活性碳纖維膜表現出最低的體積電阻值(6Ω-cm)。
In this study, the carbon grade polyacrylonitrile fiber was used as the raw material of electrospun nanofiber membrane. Then, the nanofiber membrane was underwent oxidation, carbonization, and activation process to manufacture activated carbon nanofiber membrane. The activated carbon nanofiber membranes of different crystalline properties, electrical properties and the surface structure were manufactured by using different carbonization temperature of 800 C, 900 C, and 1000 C and different steam quantity of 80cc/min and 120cc/min. Then, the effect of different temperature and steam quantity on the properties were discussed. The results showed that the surface pore structure and electrical properties were improved as carbonization temperature increased and the volume resistance showed a decline trend. In addition, the activated carbon nanofiber membrane showed the lowest volume resistivity value (6.0Ω-cm) at carbonization temperature of 1000 C and steam quantity of 120cc/min.