It is well known that the primary targets responsible for first-order sea echoes observed by a High-Frequency (HF) radar are the advancing and receding ocean waves with the wavelengths at Bragg scales. However, in light of the fact that the ionospheric sporadic E (Es) and F layers may be present in the viewing range of the HF radar for ocean wave detection, the radar returns reflected from the F and Es layers may significantly contaminate the ocean wave power spectrum. The characteristics of the first-order sea echoes and ionospheric interferences measured by the CODAR-SeaSonde in Taiwan area are analyzed and presented in this article. The coherences and phases of the normalized cross spectra of the sea and ionospheric echoes between different pairs of the receiving channels are calculated, respectively. One of the striking features presented in this report is that the ionospheric echo heights scaled from the ionogram observed by the Chung-Li ionosonde are about 30 km lower than those observed by the DATAN CODAR-SeaSonde. It is also found that the coherences of the sea echoes are generally smaller than those of the ionospheric echoes by about 15% on average, and the phase fluctuations (standard deviations) of the sea echoes are substantially larger than those of the ionospheric layer reflection echoes. In addition, statistics show that the sum of the mean phases of the ionospheric echoes between the three receiving channel pairs is approximately zero, while it is not for the sea echoes. These results seemto suggest that the use of the discrepancies in the characteristics of the coherences and phases between the sea and ionospheric echoes may provide
關聯:
INTERNATIONAL JOURNAL OF ANTENNAS AND PROPAGATION 文獻號碼: 1756761