文化大學機構典藏 CCUR:Item 987654321/35957
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 47126/50992 (92%)
造访人次 : 13864316      在线人数 : 275
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻
    主页登入上传说明关于CCUR管理 到手机版


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: https://irlib.pccu.edu.tw/handle/987654321/35957


    题名: A Hybrid Detecting Fraudulent Financial Statements Model Using Rough Set Theory and Support Vector Machines
    作者: Yeh, CC (Yeh, Ching-Chiang)
    Chi, DJ (Chi, Der-Jang)
    Lin, TY (Lin, Tzu-Yu)
    Chiu, SH (Chiu, Sheng-Hsiung)
    贡献者: 會計系
    关键词: Fraudulent financial statements
    rough set theory
    support vector machines
    日期: 2016
    上传时间: 2017-04-17 13:22:09 (UTC+8)
    摘要: The detection of fraudulent financial statements (FFS) is an important and challenging issue that has served as the impetus for many academic studies over the past three decades. Although nonfinancial ratios are generally acknowledged as the key factor contributing to the FFS of a corporation, they are usually excluded from early detection models. The objective of this study is to increase the accuracy of FFS detection by integrating the rough set theory (RST) and support vector machines (SVM) approaches, while adopting both financial and nonfinancial ratios as predictive variables. The results showed that the proposed hybrid approach (RST+SVM) has the best classification rate as well as the lowest occurrence of Types I and II errors, and that nonfinancial ratios are indeed valuable information in FFS detection.
    關聯: CYBERNETICS AND SYSTEMS 卷: 47 期: 4 頁碼: 261-276
    显示于类别:[會計學系暨研究所 ] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML268检视/开启


    在CCUR中所有的数据项都受到原著作权保护.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©  2006-2025  - 回馈