文化大學機構典藏 CCUR:Item 987654321/35955
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 46962/50828 (92%)
造访人次 : 12457806      在线人数 : 618
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻
    主页登入上传说明关于CCUR管理 到手机版


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: https://irlib.pccu.edu.tw/handle/987654321/35955


    题名: A novel cloud manufacturing framework with auto-scaling capability for the machining industry
    作者: Chen, CC (Chen, Chao-Chun)
    Lin, YC (Lin, Yu-Chuan)
    Hung, MH (Hung, Min-Hsiung)
    Lin, CY (Lin, Chih-Yin)
    Tsai, YJ (Tsai, Yen-Ju)
    Cheng, FT (Cheng, Fan-Tien)
    贡献者: 資工系
    关键词: e-manufacturing
    manufacturing information systems
    web-based manufacture
    web-based design
    advanced manufacturing technology
    systems design
    日期: 2016
    上传时间: 2017-04-17 13:14:29 (UTC+8)
    摘要: The globalised machine-tool manufacturing enterprises are eager to develop intelligent machine tools and novel business models to increase their competitiveness. In recent years, cloud manufacturing, encapsulating distributed manufacturing resources into cloud services for supporting all tasks in a product life cycle, has emerged as a promising concept and approach for the machining industry to achieve such a goal and gain profits. However, there has been no systematic approach to the development of cloud manufacturing systems (CMSs) for the machining industry so far. In this paper, we propose a novel cloud manufacturing framework (CMF) with auto-scaling capability (called CMFAS) aimed at providing a systematic and rapid development approach for building CMSs. The proposed CMFAS contains a cloud-based architecture which can transform single-user manufacturing functions (MFs) into cloud services that can be accessed by many users simultaneously. Also, a user-acceptable time-based scaling algorithm is designed so that the CMFAS can automatically perform scale-out or scale-in on the number of virtual machines (VMs) according to the user arrival rate, while confining the average service time for a user to be less than a specified user-acceptable time using a minimum number of VMs. Finally, we develop an Ontology Inference Cloud Service (OICS) for machine tools based on the CMFAS and deploy it on a public cloud platform for conducting integrated tests. Testing results show that the OICS can successfully recommend proper machine tools and cutting tools for machining tasks, and the proposed scaling algorithm outperforms traditional CPU-load-based scaling algorithms in terms of a smaller average service time for a user (i.e. quicker processing time) and a smaller number of created VMs (i.e. less cost of leasing cloud resources). The proposed CMFAS, together with its detailed designs, can serve as a useful reference approach for systematically and rapidly building CMSs for the machining industry.
    關聯: INTERNATIONAL JOURNAL OF COMPUTER INTEGRATED MANUFACTURING 卷: 29 期: 7 頁碼: 786-804
    显示于类别:[資訊工程學系] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML221检视/开启


    在CCUR中所有的数据项都受到原著作权保护.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈