文化大學機構典藏 CCUR:Item 987654321/35719
English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 46962/50828 (92%)
造訪人次 : 12454527      線上人數 : 600
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    主頁登入上傳說明關於CCUR管理 到手機版


    請使用永久網址來引用或連結此文件: https://irlib.pccu.edu.tw/handle/987654321/35719


    題名: 影響功能性舟狀骨下降因素之探討暨介入不同硬度足部輔具對下肢生物力學傷害風險之分析
    The Relationship Between Functional Navicular Drop and Anthropometrics and Effect of Hardness of Foot Orthoses on Lower Limb Biomechanics
    作者: 陳宗榮
    貢獻者: 體育學系運動教練碩博士班
    關鍵詞: 內側縱弓
    足部輔具
    生物力學
    日期: 2017
    上傳時間: 2017-03-29 13:49:32 (UTC+8)
    摘要: 本研究目的為 (1) 以身高、體重、身體質量指數、股四頭肌角度、去指足長、年齡分析出影響靜態功能性舟狀骨下降程度的因素。(2) 比較分析扁平足和正常足受試者在未穿著足弓支撐鞋墊情況下,執行走路/跑步/垂直跳著地時的下肢生物力學參數。(3) 比較分析扁平足和正常足受試者在介入扁平足/正常足專用軟式/硬式足弓支撐鞋墊和未穿鞋墊情況下,執行走路/跑步/垂直跳著地時的下肢生物力學參數。第一階段研究:徵召50名男性扁平足受試者,以尺規量測靜態功能性舟狀骨下降程度、去指足長、股四頭肌角度,以體重和身高計量測身高、體重、身體質量指數,以身高、體重、身體質量指數、股四頭肌角度、去指足長、年齡預測靜態功能性舟狀骨下降程度,找出最大影響因素限制研究對象篩選扁平足和正常足受試者,並比較扁平足和正常足受試者的身高、體重、身體質量指數、股四頭肌角度、去指足長、年齡沒有達到顯著差異以標準化兩組受試者;第二階段研究:以股四頭肌角度(6-10度) 限制研究對象篩選15名直腿扁平足受試者和15名直腿正常足受試者,隨後男性扁平足受試者介入扁平足專用軟式/硬式足弓支撐鞋墊和未穿鞋墊執行走路/跑步/垂直跳著地,男性正常足受試者介入正常足專用軟式/硬式足弓支撐鞋墊和未穿鞋墊執行走路/跑步/垂直跳著地。第一階段研究:以逐步多元迴歸找出影響靜態功能性舟狀骨下降程度最大的因素,以獨立樣本t檢定考驗正常足和扁平足受試者在身高、體重、身體質量指數、股四頭肌角度、去指足長、年齡沒有達到顯著差異以標準化受試者;第二階段研究:以皮爾森積差相關檢測扁平足/正常足身高、體重、身體質量指數、股四頭肌角度、去指足長、年齡與扁平足/正常足/走路/跑步動態功能性舟狀骨下降程度;以獨立樣本t檢定考驗經過篩選正常足和扁平足受試者執行走路/跑步/垂直跳著地動作,下肢生物力學傷害風險參數的差異;以相依樣本單因子變異數分析,考驗經過篩選扁平足受試者穿著扁平足專用軟/硬式鞋墊和未穿鞋墊 (3種情況) 執行走路/跑步/垂直跳著地下肢生物力學傷害風險參數的差異和考驗經過篩選正常足受試者穿著正常足專用軟/硬式鞋墊和未穿鞋墊 (3種情況) 執行走路/跑步/垂直跳著地動作,下肢生物力學傷害風險參數的差異。本研究結果從第一階段研究發現股四頭肌角度與靜態功能性舟狀骨下降程度達到顯著正相關 (r = 0.356;p <.05),且股四頭肌角度能夠顯著的預測靜態功能性舟狀骨下降程度 (p <.05);本研究從第二階段研究發現在未穿鞋墊狀況之下,扁平足受試者在走路時,後足內外翻總角度顯著大於正常足受試者 (p <.05),前足內外翻總角度雖在統計上未達到顯著差異 (p >.05),但屬於中效果量 (d = 0.67),扁平足受試者在跑步時,後足外翻角速度峰值顯著大於正常足受試者 (p <.05),雖然扁平足在後足內外翻總角度和前足內外翻總角度未達顯著大於正常足 (p >.05),但效果量為中效果量 (d = 0.75) (d = 0.67),扁平足受試者在垂直跳時,著地瞬間踝關節內翻/外翻角度顯著大於正常足受試者 (p <.05),扁平足在著地瞬間呈現踝關節內翻動作,而正常足呈現外翻動作,雖然,扁平足在著地瞬間髖關節外展角度沒有顯著大於正常足 (p >.05),但屬於中效果量 (d = 0.66),正常足著地後負荷率顯著大於扁平足 (p <.05),正常足在至垂直跳著地後地面反作用力峰值時間顯著小於扁平足 (p <.05);扁平足受試者在穿鞋墊狀況之下,走路時,穿著專用硬式足弓支撐鞋墊比未穿鞋墊顯著減少後足內外翻總角度 (p <.05),扁平足受試者在跑步時,穿著專用軟式足弓支撐鞋墊中比未穿著顯著增加垂直地面反作用力第二峰值 (p <.05),正常足受試者在穿鞋墊狀況之下,正常足受試者在走路時,穿著專用軟式和硬式足弓支撐鞋墊顯著比未穿著顯著的減少前足外翻角速度峰值 (p <.05),正常足受試者在跑步時,穿著專用軟式足弓支撐鞋墊和硬式足弓支撐鞋墊皆比未穿著顯著增加垂直地面反作用力第二峰值 (p <.05),正常足受試者在跑步時,穿著硬式足弓支撐鞋墊比未穿著顯著的增加垂直地面反作用力第一峰值 (p <.05)。本研究結論發現股四頭肌角度會影響到靜態功能性舟狀骨下降程度,意即未來研究可以考慮加上股四頭肌角度來篩選扁平足和正常足受試者,能夠排除腿型的影響,而真正確認"足部型態"對足底腱膜炎、內側脛骨壓力症侯群、足部壓力性骨折等傷害風險的影響;本研究第二階段研究進一步控制影響靜態功能性舟狀骨下降程度的因素和腿型去篩選出直腿扁平足受試者和直腿正常足受試者,發現"足部型態" (扁平足) 確實會增加足底腱膜炎、內側脛骨壓力症侯群、足部壓力性骨折等傷害風險,扁平足受試者方面,扁平足受試者穿著專用硬式足弓支撐鞋墊在走路時,有效減少後足內外翻總角度,進而減少足底腱膜炎、內側脛骨壓力症侯群、足部壓力性骨折等傷害的風險,然而,穿著專用軟式足弓支撐鞋墊無法達到類似的效果,除此之外,扁平足穿著專用軟式足弓支撐鞋墊可以增加跑步時的推蹬力量,正常足受試者方面,正常足無論穿著專用軟式或硬式足弓支撐鞋墊皆可以減少在走路時的足底腱膜炎、內側脛骨壓力症侯群、足部壓力性骨折等傷害的風險,此外,正常足穿著專用軟式足弓支撐鞋墊和硬式足弓支撐鞋墊皆可以增加跑步時的推蹬力量,但是,必須注意正常足在跑步時穿著專用硬式足弓支撐鞋墊會增加地面的衝擊力。
    Purpose: There were three sections in the study. The purpose of the first section of this study was to investigate the relationships of the body weight, body height, body mass index, truncated foot length, age and quadriceps angle with the static functional navicular drop of flat-foot population and to find the most crucial factor influencing the static functional navicular drop. The purpose of the second section of this study was to compare the effect of flat-foot and normal-foot on the risk of lower limb injury during walking, running and vetical jumping. The purpose of the third section of this study was to compare the effect of the soft/ rigid arch-support insole on the risk of lower limb injury during walking, running and vetical jumping in flat-foot and normal foot. The subjects with flat-foot and normal foot were slected based on the most crucial factor influencing the static fuctional navicualr drop. Methods: First, fifty health males were measured for the static functional navicualr drop, body height, body weight, body mass index, truncated foot length and quadriceps angle using height-weight scale and rulers. Pearson correlation coefficients were used to examine the relationships of the body height, body weight, body mass index, truncated foot length, age and quadriceps angle with the static functional navicular drop. A stepwise regression model was employed to determine which parameters were related to the static fuctional navicular drop. Second, fifteen subjects with flat-foot and fifteen subjects normal-foot were selected and they were classified as straight leg based on quadriceps angle of 6-10 degrees. The flat-foot were fitted with their specific soft/ rigid arch-support insole and non-arch support insole while walking, running and vertical jumping. The normal-foot were also fitted with their specific soft/ rigid arch-support insole and non-arch support insole while walking, running and vertical jumping. Pearson correlation coefficients were used to examine which parameters (body weight, body height, body mass index, truncated foot length, age and quadriceps angle) were related to the dynamic fuctional navicular drop. All parameters were analyzed using the independent t-test to evaluate whether the means of the variables differed significantly between the flat-foot and normal-foot. An independent t-test was used to compare the biomechanical data of the flat-foot and normal-foot with the non-arch support insole while walking, running, vertical jumping. The one-way repeated measures ANOVA was performed to compare the changes of biomechanical parameters depending on the different conditions (soft/ rigid arch-support insole and non-arch support insole) within flat-foot and normal-foot groups. Results: The correlation between the Q angle and static functional navicular drop was medium positive (r = 0.356;p = <.05). The Q angle can significantly predict the static functional navicular drop (p <.05). Subjects with flat-foot demonstrated greater total rearfoot frontal plane angle (p <.05) compared to those with normal-foot while walking. Analyses of total forefoot frontal plane angles showed no statistically significant difference between groups (p >.05), but a medium effect size (d = 0.67) was reported for higher total forefoot frontal plane angles in the flat-foot group while walking. Subjects with flat-foot demonstrated greater peak rear-foot eversion velocity (p <.05) compared to those with normal-foot while running. Although the total forefoot and rearfoot frontal plane angles showed no statistically significant difference between groups (p >.05), but a medium effect size (d = 0.75) (d = 0.67) was reported for higher total forefoot and rearfoot frontal plane angle in the flat-foot group while running. Subjects with flat-foot demonstrated the greater ankle inversion angle at initial contact (p <.05) compared to those with normal-foot while vertical jumping. Analyses of hip abduction angle at initial contact showed no statistically significant difference between groups (p >.05), but a medium effect size (d = 0.66) was reported for higher hip abduction angle at initial contact in the flat-foot group. Subjects with normal-foot demonstrated the greater loading rate (p <.05) and smaller time to peak force compared to those with flat-foot while vertical jumping. The frontal plane angle of rearfoot of the flat-foot was less in the rigid arch-support insole than in the non-arch-support insole while walking (p <.05). Peak fore-foot eversion velocity of the normal-foot was less in the soft and rigid arch-support insole than in the non-arch support insole while walking (p <.05). Peak impact force of the normal-foot was greater in the rigid arch-support insole than in the non-arch support insole while running (p <.05). Peak proplusive force of the flat-foot was greater in soft arch support insole than in the non-arch support insole while runing. Peak proplusive force of the normal-foot was greater in soft/ rigid arch support insole than in the non-arch support insole while runing. Conclusion: The Q angle can influence the static functional navicular drop. This would mean that researchers can considere using Q angle to screen the flat-feet and normal-foot, excluding the influence of leg type, and truly confirm the influence of foot type on plantar fasciitis, medial tibial stress syndrome, and foot pressure fractures. This study further used the factors influencing the functional navicular drop and leg type to screen the subject with flat-foot and normal-foot, and found that the flat-foot did increase the risk of the plantar fasciitis, medial tibial stress syndrome, and foot pressure fractures. This study found that the rigid arch-support insole can decrease total rearfoot frontal plane angles inducing the risk of plantar fasciitis, medial tibial stress syndrome, and foot pressure fractures while walking in flat-foot, however, the soft arch-support insole can not achieve the benifit. In addition, the soft arch-support insole can increase the proplusive force while running in flat-foot. This study found that the normal-foot wearing soft and rigid arch-support insoles while walking can reduce the risk of plantar fasciitis, medial tibial stress syndrome, and foot pressure fractures. Moreover, the normal-foot wearing the soft and rigid arch-support insole can increase the proplusive force while running. But the normal-foot wearing the rigid arch-support insole can increase the impact force.
    顯示於類別:[運動教練研究所] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML301檢視/開啟


    在CCUR中所有的資料項目都受到原著作權保護.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋