English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 46962/50828 (92%)
造訪人次 : 12478128      線上人數 : 562
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    主頁登入上傳說明關於CCUR管理 到手機版


    請使用永久網址來引用或連結此文件: https://irlib.pccu.edu.tw/handle/987654321/33694


    題名: 應用資料探勘於財務報表舞弊預測
    Financial Statement Fraud Prediction Models Using Data Mining Approach
    作者: 莊子琦
    貢獻者: 會計學系
    關鍵詞: 財務報表舞弊
    資料探勘
    決策樹
    類神經網路
    fraudulent financial
    data mining
    decision tree
    neural network
    日期: 2016-06
    上傳時間: 2016-08-17 13:34:56 (UTC+8)
    摘要: 本研究應用資料探勘方法中的決策樹QUEST、CHAID、C5.0及類神經網路(neural network),作兩階段的篩選建模分析,並採用財務及非財務變數,敝作為審計人員偵測財務報表舞弊之工具。研究對象為2007年~2013年之32家發生財務報表舞弊公司及96家非財務報表舞弊公司以資產總額1:3作樣本配對,本研究共分為二個階段:第一階段分別以決策樹QUEST、決策樹CHAID及類神經網路(neural network)作變數篩選。而在第二階段以決策樹C5.0及類神經網路(neural network)做建立模型。本篇研究結果顯示,第一階段應用資料探勘之三種方法作變數篩選再導入第二階段建立模型,在第二階段建模中皆以決策樹C5.0的分類表現為最佳,可以有效地偵測財務報表舞弊發生,藉此降低審計人員之查核風險。
    This study applies decision tree (QUEST, CHAID, and C5.0) and neural network method in data mining to a two-stage screening and modeling analysis, and uses financial and non-financial variables, as a tool for auditors to detect financial statements fraud. This study took total assets of 32 companies who have involved in financial statements fraud, as well as 96 companies who have not during 2007-2013 as paired samples (1:3). The study is divided into two stages: the first stage uses QUEST-based decision tree, CHAID-based decision tree and neural network respectively for variables screening. In the second stage the study uses C5.0-based decision tree and neural network for modeling. The results show that regardless of which one of the three methods in data mining is used for variables screening before introducing their results into the second stage, the C5.0-based decision tree method has a best classification performance in the second stage modeling. It can effectively detect the occurrence of financial statement frauds, thereby reducing audit risks for auditors.
    顯示於類別:[會計學系暨研究所 ] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML334檢視/開啟


    在CCUR中所有的資料項目都受到原著作權保護.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋