摘要: | 本研究包含三組二元成分混合溶劑系統:正己烷 + 正壬烷、正己烷 + 正十二烷、正壬烷 + 正十二烷;以及一組三元成分混合溶劑系統:正己烷 + 正壬烷 + 正十二烷,在 293.15K、298.15K、303.15K與308.15K四種溫度及 0.1 MPa 下進行密度及黏度的量測。利用量測的實驗數據進行各種相關模型的迴歸分析。不論是二元或三元系統均探討過剩莫爾體積、黏度偏差、黏度與動黏度四種重要的物理性質。二元系統利用 Redlich-Kister 多項式進行回歸過剩莫爾體積及黏度偏差,另外也用 Grunberg-Nissan 、Heric 以及 McAllister 等半經驗方程式來針對黏度進行估算;三元系統在過剩莫爾體積以及黏度偏差上利用 Cibulka 、 Singh 、 Nagata-Sakura 方程式進行回歸,並利用 Radojkovic 、 Rastogi 、 Kohler 、 Toop 、 Tsao-Smith 、 Jacob-Fitzner 、 Colinet 、 Scatchard 經驗方程式來做預測,上述所有回歸方程式的參數在文章中皆有提出。其結果顯示混合物在過剩莫爾體積、黏度偏差以及黏度中,實驗所量測的數據與模式計算之結果相當一致。
This paper was measure the density and the viscosity of the binary mixtures : n-Hexane + n-Nonane, n-Hexane + n-Dodecane and n-Nonane + n-Dodecane, and of the ternary mixtures : n-Hexane + n-Nonane + n-Dodecane, at T=293.15, 298.15, 303.15, and 308.15, and at 1MPa. We used the regression analysis of the related varity models to analyz the results of experimental data, and discussed the important physical characters ( the excess moire volume, the viscosity deviation, the viscosity, and the dynamic viscosity ) of the binary system and of the ternary system. In the binary system, we used Redlich−Kister polynomial equation to analyz the excess molar volumes and the viscosity deviations, and used the Grunberg−Nissan, Heric, and McAllister equation to analyz the viscosity. In the ternary system, we used Cibulka, Singh, and Nagata-Sakura equation to do regression analysis of the excess molar volumes and of the viscosity deviations, and used Radojkovic, Rastogi, Kohler, Toop, Tsao-Smith, Jacob-Fitzner, Colinet, and Scatchard equation to predict the excess molar volumes and the viscosity deviations.
This experimental results revealed that the results of the experiment of the excess molar volumes, of the viscosity deviations, and of the viscosity were almost as same as the results of model calculation. |