文化大學機構典藏 CCUR:Item 987654321/32511
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 47126/50992 (92%)
Visitors : 13863610      Online Users : 51
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: https://irlib.pccu.edu.tw/handle/987654321/32511


    Title: A New Derivation for the Necessary Condition for the Q-Superlinear Convergence Rate in SQP Methods
    在連續二次規劃中當變數x為q超線性收斂時其必要條件的新導法
    Authors: 江哲賢
    施登山
    Contributors: 應數系
    Keywords: Secant
    Quasi-newton
    SQP method
    Superlinear convergence 1980 mathematics subject classification
    Primary 49D15
    65K05
    連續二次規劃
    變數
    超線性收斂
    Date: 1996-05
    Issue Date: 2016-04-07 13:22:29 (UTC+8)
    Abstract: 本文討論在連續二次規劃中當變x為q超線性收斂時,其必要條件的另一種導法。
    We present a new derivation for the necessary condition for the q-superlinear convergence rate in SQP methods for equality constrained optimization. We use some results in Chiang, J. and Taipi, R.A. (1989) to show this condition. These results seem useful in establishing local convergence properties for SQP Methods when we know the covergence rate for the variable x.
    Relation: 華岡理科學報 13 民85.05 頁91-98
    Appears in Collections:[Department of Applied Mathematics] journal articles

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML125View/Open


    All items in CCUR are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©  2006-2025  - Feedback