文化大學機構典藏 CCUR:Item 987654321/32502
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 47121/50987 (92%)
造访人次 : 13822312      在线人数 : 222
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻
    主页登入上传说明关于CCUR管理 到手机版


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: https://irlib.pccu.edu.tw/handle/987654321/32502


    题名: Fuzzy Shortest-Path Network Problems with Uncertain Edge Weights
    作者: 姚景星
    林豐澤
    贡献者: 應數系
    关键词: triangular fuzzy number
    level (1-β, 1-α) interval-valued fuzzy number
    shortest-path network problem
    fuzzy shortest-path network problem
    signed-distance ranking
    日期: 2003-03
    上传时间: 2016-04-07 10:25:32 (UTC+8)
    摘要: This paper presents two new types of fuzzy shortest-path network problems. We consider the edge weight of the network as uncertain, which means that it is either imprecise or unknown. Thus, the first type of fuzzy shortest-path problem uses triangular fuzzy numbers for the imprecise problem. The second type uses level (1-β, 1-α) interval-valued fuzzy numbers, which are based on past statistical data corresponding to the confidence intervals of the edge weights for the unknown problem. The main results obtained from this study are: (1) using triangular fuzzy numbers and a signed distance ranking method to obtain Theorem 1, and (2) using level (1-β, 1-α) interval-valued fuzzy numbers, combining statistics with fuzzy sets and a signed distance ranking method to obtain Theorem 2. We conclude that the shortest paths in the fuzzy sense obtained from Theorems 1 and 2 correspond to the actual paths in the network, and the fuzzy shortest-path problem is an extension of the crisp case.
    關聯: Journal of Information Science and Engineering ; 19卷2期 (2003 / 03 / 01) , P329 - 351
    显示于类别:[應數系] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML204检视/开启


    在CCUR中所有的数据项都受到原著作权保护.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈